Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8f017042bd704ef30f6852f8bac9dfe463376edbf8e7ccc2f318534bcf698ddd
MD5 c4a3784774fb0b4dddc1f8ff90d2d7d1
BLAKE2b-256 0c4a7bd6bf7654d5e5c9c677e5dd9d01981022be8848ef2e08043d2f240fc117

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a6e27831d8ee7262fcf7e3a9f53f5a68cf041cd09785f859aa2223a28bdefcb9
MD5 ffc616621730add042b3c1c56d427951
BLAKE2b-256 c7b02cf74c76e089d7c367f98cce35ad42c3abe2530f6d2e3e795c043029ee05

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37fd117c1363a3901960e2f2ccf1de9b5797c86749d763ed1fc1003867799063
MD5 7917e1d239be2ebabb2b01a91f14c7d9
BLAKE2b-256 76c083d3b153fb1272cbb17171b1de91489cd4e1b5cb06ed6817459e2ed694d6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 363d0e1d793fab55ff36e97ddbbb2adf3bf60cf7dc190dd67622fcf6b00c4cd6
MD5 6b8affc8098e0bad70071c75ba74ca16
BLAKE2b-256 621d56ee03036a0b23faa5636e3d6e6440faac14aabb153cab795a3bec359999

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7aab74ecc96bc1c92bb48cdf4508ca6a535e8d4895fc296b29f525a51909d179
MD5 12fd80c6e02945919c786fbacaed6cf6
BLAKE2b-256 eed8fb713538ea6cca12a5b8713c3a08e26c20d0c28332e3e76a2be3304d0d52

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 13e0dd21fff97a6230d7cc9d218530b4e8e841a5e9ae51ff61f551f2012526bf
MD5 f9c646839f59f371a2ede4c06dd26d9d
BLAKE2b-256 8beecd562b800d64a2e5e98285452b7d491438e53837680fc2d8808ad83f9bbe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4a6cc5090163397a83c9f3570aafcaa6f4b4847d1b2bf1790ea2b114f7e8d1f
MD5 2c5b739ab50cf926484cda6faae78c7e
BLAKE2b-256 8b14c70d7fd1993405673df9983a62c0e7e83cdc325365e54f59db59eea5faee

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c804cacd616645cd219a3ae8a1075ed886ac8c8da20fad2c9610826ca1c13332
MD5 e0fd18c617252a644d169ab2958d6ca3
BLAKE2b-256 0f5780520baa1225a2d20fdabf19b492656fd195307cc598f664782c68560e2c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a08125d09d14589ca3ab22c1b6c8531cc5b5e516df9fb936e6091e314077355a
MD5 c24c798d04eecd6924e5657ee1f8b626
BLAKE2b-256 694f3ae4aa040465d2490349843568f43f1777fe601dc43661cfee3ab716f35f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c024dbf9628bfe6509214a7a0d0083048924e9e6a5ee3ce88569f4113a4b3c75
MD5 9187f6cd9e126abcf841d701f4e7856e
BLAKE2b-256 fd61a8360674c65bc37e072a19e3c8c781288427abc23d971cc0f6e691273b84

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 68412fc03ed7cdfa4d93bed17a7277c2b233ba38aff8bf8db1309cf24fd6d078
MD5 f5d7a1ee9f2189a95db864519482794b
BLAKE2b-256 c6eb559fa5c5040b7d65bfa3831dd84891104e5a01038d7bf4c130cd6dfb7d46

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 612a20bea433e96b737a944f16528d7580859b58a699e34927b8122d91bf1336
MD5 1492689a1a730cfdd0cb2e7ad0adf028
BLAKE2b-256 d270bfe346d892e5e60f3f4ac5fdaaadae73032640702d242ee1ad7c005396cb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f38fb5bc051a8c4989130e2aa29d9f848bb7eca3a10e551d611756aa384f84f3
MD5 33011f2faf3cd1cb23c89c20a13c4b16
BLAKE2b-256 e77352793bad457c840678b2af235100a421f4e703a931c22b818df232c1c36f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a100a4b51b9ba254a6f5ac4892f01e4a1b9e98772ab4ed93a65d0ef9edd4c7f4
MD5 ec406aa41b30ffabf528f06bedd96255
BLAKE2b-256 9c96fb9420cd1e33ddbaf479b405465d8a69d59d42733f050506aa7c472e7f19

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 626d1e82e8503fcb057f030cd425e3b0c02478f6faa0749e56807b95774de078
MD5 e2c38abefb7780bc9617efce5fe946a4
BLAKE2b-256 3ab094b83b43dbc2e6bc9cb9014b60adddad132e369284cac572e46dcf504bef

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f4fd8204fde0a939f20181663648f1f6fc643f320e6cc353dd3f89dae54bb91c
MD5 0541f8f97d9c8cc702ea6938ba3086aa
BLAKE2b-256 7f1ea397e1f164782a0cb43625e2b7ac95649b19e2b24041a1dd7b86d9d7daa2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a62c5966ba1d24a7d95f0603de4c55385e18bee5a706a6d7c31bfce886aa4514
MD5 c95b2e1bb78aab2bc9ea023c903c959d
BLAKE2b-256 93a5ffdd57bd4c16947ad632c93aa36c2813ec4fed5fcc17eb44c3fe9c1d9cd3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6b87ef420ba12a37b5fa3a562753dd8b0c8df964b27a025142c171c2ba16053
MD5 979dee609a5d4959d19d216486fa8c82
BLAKE2b-256 75e32b708477b8fc3f47be5d2adbc3da357de428dcefafd2bfb33bde9cb2972c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2248b693909ba10eaea7976d7d7321eea611e9abd8982844fd7e10123f531725
MD5 f224aed8da9cc81f6e3d59f9ff8d66ce
BLAKE2b-256 98a4a2e9c2356234548db4a5bf5d6ca60178456944132b7af2f09e9a5867ea57

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307141689183073-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11663c583b83347c3fabc03d080aefed7b4ba3402b47fe6dd9aa836bd3166b5b
MD5 82ad6ab0ae7930e3a16cc6c705dd6611
BLAKE2b-256 be79d8f69880e0c76efee1a55277d4d6090a33367d485c2fb1b7a9e0feb65fa8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page