Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cb46f650497d6d044062027a7700cb98a7fb465abf123b3b86247d5cf82d8e74
MD5 d1728ceebf4f1ea594b915dced006d9f
BLAKE2b-256 aa0849506ffc42947fa9f60803588c800aae9fcf08da43fc49c7f0478610af33

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e29f1f61bbaeafabf8bc2e8ee36fe0d00f7b79da5bf3ed55327acc7235a8d95a
MD5 0c9b8e1ed96e8bac95436a676e178cb0
BLAKE2b-256 9621347e438990a95c3495185db4401d75b9093396068b4ad2fdf3b52d7d5381

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1a4aad94c8c3eca37d95498c72f06eefcb95b53eab1d1627ef11d930c75cdbb
MD5 286d15569767dd86b47855253806b3c0
BLAKE2b-256 1ca5b5750e5bf8b9d7096a831781fdd98b61eceaf944fa1d0cb1e348a8dc797c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 690aa757ed181b97dd3e65950e10af43bdfc094a30d53a8feb3d5cbae4b519e6
MD5 02df0223205fc815098773384c6866c0
BLAKE2b-256 b18546e922489e852e2e48df5947db04663fc4463364292cac2e3db8c59d08ed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a96ed9676a6e6cecaff0c77efce9fe150485237661d2816ac966fc9a6674816
MD5 6b7660d78663dcbb90d1826e867775fa
BLAKE2b-256 1d30bbd58d7687455584e447709e63977e2c9ffcad202444cfeabbdefa7d90a6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b7c07675aa3b4b0d462b965eb1ea79697fbda1135ba172d563a1ec54c6116011
MD5 e4f2480fd36a1d6fb06db2129fc73d72
BLAKE2b-256 dbe85e7b701374fa7a220438ea67bd7d2c8679926e44aef79af7e9af3ffb7458

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 daecc7f4b95f6056055e8eadfd05ce70cb7da6cba0692869d97c5ef053cc6d31
MD5 59aca07f0c61513e3c0803d82b92d75c
BLAKE2b-256 5576c22d2fffc2682b40fa30b3d236257f40364708e137c3755a07b9bf2af24f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be99ef7b008cfcd7642832c52469a9ae6fe1d55e9f5990b83e604e4dce970367
MD5 bd49299b76b47778d042ef7bc43e5109
BLAKE2b-256 67a85835a1bdbba4e399ebbcbf9c76fb813cc788e0b02331e67e974eb9d79498

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b804ca751bbfca31e9e707914cbf4315d36655ebe02e2a16902ada4594ba6b32
MD5 90d0f304822e74ca87eae88a286908dc
BLAKE2b-256 cbddce9b6b7af361d4af895e7fb87466d7664b1c3a59ced59032e6642c28c5d3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 331e7d762d2f127c204bb435b4da7052a6ef7b3253924d5b92852f83c31f856f
MD5 ce2e9eaef3cd20ee137301037341ab75
BLAKE2b-256 1c09f942a6a0cb1f297244aee0d5e592860d603375b61cbc4e2b047a18a59bc0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5d3ff872269beefc08063edc8c0d893ad8559cb971ec77fe94d667c3ced5cfea
MD5 3863254f7c2fc0b4beab6d3a65ba3ee5
BLAKE2b-256 5dffca662e5043e032c782740a8accdbd74f7173d66d01045bf4396ad32bb4b4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca32e7e9837969315716b6f49d37925f79edc38477db855aa2508806f9dbca8f
MD5 69647138ad0f2e265b11ea2daf989d45
BLAKE2b-256 06f343fa133f499bfab0a4f7959d72c023e0c65c45496878b8fc019ff31ba864

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9dc49e621a21c07e6e9c91a69729dd75f723ae70e7dca56502bdc43b574d783b
MD5 516dbc5ef34e5d52bd54b9b24f4c8831
BLAKE2b-256 b129eaaabccc86657c5bb3c3256a94e5669fed76c539f368966eaddf73e05abc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 551ba8546b9626f798b56a238a5d617e21646e3e85091f6d91d5ba962aede538
MD5 bc8619f5683756dd151cb08bbcb0ebe0
BLAKE2b-256 4f50cc8a6d1bf5fad4a4584011457f9c97181eeee7ba1b0aa1fed28d007ad2eb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ca8b0226171d7572e54fc9a56ccbdc4825b0f327c85c0bb10e317ca98a03344
MD5 32cc9c12ba52a4acbfe479250b88672c
BLAKE2b-256 ab435ee1335af8f5c19be623cf5fe49e827d20e46107178953b038277635b6dd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2dee63ba0d4c31b6d30596cb521eb83ad7c4747b17a568ec8a79c8b15c6f6ab3
MD5 ec99243f8efe7c4885168a5b7d1e7bdf
BLAKE2b-256 48127184f6672fb8f5a394ccafaadbd3b8ea58a4f3076c8d4533d5e1d5cb1077

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a0e5d388d802423c5503e5f40f3d0a1800e094d8b1c98f45340a88eeaac21c76
MD5 2c92da7ad73be19a89785cfe3a220062
BLAKE2b-256 d20c2edf739e4f772a19bdd945564a1625a4840b3e7d148f8716b775502ba130

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b65e31f15b7bda5b5014e3953aeb1a8f1902bedd0b2c9857ef2dae4080719653
MD5 76e8d0d9c0528719c8e2a2fdd5096fd7
BLAKE2b-256 f8c18f56f9dd148fb3864bc2d3155cf083974398d08da2140920510dc7c797d7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3b3d92619d23b78aca4a0a74c66f8c269c0e1bb4b3b92e9160125de5cab6d2dd
MD5 d8e0be0fff8499faa785b2eb6ec2e554
BLAKE2b-256 b211f572a1e9592adac8e47616fc46ba64410c31c59f8ba8d2526e1ca8f16a7a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307161689183073-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e2ce6ea0873ef8e611306406328471a8f0e7791dbe5881c188218283e585ad3
MD5 5373a0f3b3cc83125abfbc0f16b0e852
BLAKE2b-256 7d209a4c02600b44921e02665500e6a3c3233fbb179efc9f03b37e10e8def0a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page