Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 519b0d9e4acd977ed6c7b6ac290dfd7cebddcf3b903593134a88b9afb62e0174
MD5 0e0e451e91d14e3c9a9870f35b6ae755
BLAKE2b-256 53e321eb4af584ec0c05447a34ba8f55afcad8f3e609f4cf650e125002b70f86

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c0fbbd18315e4ce766fb457c0d3a916696643b9fba688de2c5dc14832a66b6d
MD5 28e46eb1b6b3f057e55e92b5382cd60d
BLAKE2b-256 4bace98d5284a0e3574914be3ab725662e85151c2408fca8f95550748be86463

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c25b4e9ec2889cc325ff50791922d3be09f666ec956b5a11bc3c65c93715b9cb
MD5 1999598037a29a2c60b599fdba9cde6c
BLAKE2b-256 5226e504fa657406840ce706c29446a221ac350fc206f18e690e2e00d1b365bb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4cdc157d45e754de3873a8285e6157325daf0913ea51e95ec7a8c1b223264e7c
MD5 2f29213f6c5462d6077d8ab89132eea8
BLAKE2b-256 be1244d8af3528a7b5170d1e1f28b0a96afac7c4a2c7d20491943a5861c655d7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a77f38743056d0077b71877ebccadbe5b19c8b6853bc7bf432e5b5d661b83cd4
MD5 69861ba97acb14c8cd9b5b867bcd9c59
BLAKE2b-256 893be1f711c80ae87909acafe7257915471caa011e84e90d32dffb3a2a2bd1e2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 003b7a1139846f0d15be21dd572e7cba5d2a45855dff12a97549a63b39c24b7f
MD5 83828a67a60f717724ca038a842bf15e
BLAKE2b-256 a0d6484cbb2f26dac5c34e6974865b12f7dd270eed8fc40523028aacc2c2ed8f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 423b165d7fcb5eeb8821a900fad61332729d8b8716f16fdacef1842bc69f055f
MD5 fa3a7d69c634b36892a23a5b92aff1bd
BLAKE2b-256 09828c99ac278fc9e333b495600f92c126a8cd482b35b4976f6b755200e60921

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 043bd02ee0b6af5e1e13822b7a536d81e52a21d70a40ef304ac573f61cc69bcb
MD5 f7d1b2ee20de44263517e9f73a6a169b
BLAKE2b-256 efbf9cb03f19595cb075ef58448890d1b29e5d07e8a8b571d6a615ac62dddfd2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19ecc7943f39328e2675ba64bbbcae4712d4b261fade5adc57deacbb14777fc6
MD5 6a6cadcd23525044f9c345c202c8897a
BLAKE2b-256 bd83f24f6ecbe2a3bdb1fd3cc43a6d3af0924f7107aba22d00b29b6445a8f700

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 31403cb8587187ebb21d187cfabc8a84d070bb956bfc3a619d9b2bc2667be195
MD5 cc75237cf940c288512795fc63a59aa6
BLAKE2b-256 f5a547f24a89097c9319f106dbff8be48d607c98b49a2fe118ee976e3401e868

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 65a41f99f8547ecd114b2bda5591571c79bc1d1f694b11ca0cbcc6275b01ed53
MD5 be94b59da816f557c5acdd27cd63faf6
BLAKE2b-256 a64b01749f16349e9753386b57dfaae36bb65fcc3d8432e3560bfc30a44a63fb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fafb0fb30d6417de1520a9d5d9d9e27dac8d65022e00992311cc0f0a1c6b5189
MD5 3b18cd3bbefce8ee0d6b52e41e5211a4
BLAKE2b-256 37d468984c4924d61cf488773dee1be2ac44a6697921d688c326c822dc6dff55

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a91873fea689141a9c518e38f51dff3d85d03d4b54d1f1d75bccad19e949c44f
MD5 80c4c00db448aa36f51289c41dd6d7fa
BLAKE2b-256 0b8a1d617f9e0634b7afba1ac14a1e657ae73d47a06cc1a99662288769a7e899

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d621522bec7bad197e719876373a96ac3c6dd09775df9b01bc3a3ddc96f44fea
MD5 807da3fbc5a6acbc81bf5343389db5c6
BLAKE2b-256 4852b53f3409768f5890f3a1324ffe53531166b4a4be41abe42852af40b35014

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3481f0390002f49987e6cbbaea49875326f721991b78a7ea9f6e79054f630e46
MD5 54de54f897479c3ae99829685311a813
BLAKE2b-256 896a520ccf42b361685c0a031a2b7a22c6131cf20726b66dfcb2724a3e89023a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 84bfc2a1bb3380991956f60b807d012ddb1bf747a679d4e87d4c801d4ff33708
MD5 e66a6e016ff62cda11c786551b6f4a8a
BLAKE2b-256 f139981b9581c3178509761798f1bd24a567241206f7af24c7b512c29bbed15a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c754ec403cf0d9563b442ca8971ad66511483d7a252e658ce218ee74c40e8af2
MD5 e2db99f816a82a0e80e0293a22b13d33
BLAKE2b-256 320d0dd1e015b847ff2f53f11cd9fc84eea67be03c77dbd8006a9655530756f0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3bae90fe98c41da30d8f2b560c883a208decde648d50fb678adb94d5627b3b87
MD5 6b6c76bdbd71656dba6fd4fbb3c0e9ec
BLAKE2b-256 02d612a3dd15a6a00fa184b6b715551c98da3c9fb78a966c9fa1f249a9f33cc2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 07499ed170fdf770af636413f83500035762bf57aba8bc4b6f00b99c7b1e254d
MD5 54dd68315637d6b4a73a14e670c7b8c9
BLAKE2b-256 e8c09557aa1f02991f8d195adc9320458d73850d589612a949e0bdc6c9b39186

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307201689183073-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa61f574ceed6ff06e0a0e466897992aa762e39539bcd8a5f5ea1df0e6d6bc0d
MD5 227eb4fb80c3072c87e1902606ce0005
BLAKE2b-256 4b5fcb1e7e06cbe0b11ab993d53928b51d2a65c1ca6f77e0c9d621bd4eaa2927

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page