Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b61c31dce981ad243fef102b770d4774b23ace8dae56dcc6e6535259ed9fc211
MD5 e7e81bb4822644e84985e5415f8befe6
BLAKE2b-256 ac7d4cd8e8e19ff7327431bb247f175d19e20e6a0f89996feb84cba1ec256364

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d442b38e56ed3e5991d67138484d7492b8b4f984ae26fdc76db3985edb7f5ece
MD5 dd7c9d785ba8f2384d3f97cea2962c35
BLAKE2b-256 0a7c0cd5670fb369b41943c9cd201cb484c7f6453f5f4ba07311c327af0f45af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b53b07f3cbe78a3411d2bf4db3270ad57138f722854aaa46ccc478247469c2e3
MD5 1d36210d6346a2f9605111172b2ab116
BLAKE2b-256 0bd05ae504dbb0cf854b03acccad8f12b0c191fdc93f8eb9e7647ac9d05a7ea2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a0244d071d3a6821e4d35cdc3ca8e9a12c5e6abc236d2b3ba93d3b479ede4320
MD5 8858056754f27572e6a570b34726cdc0
BLAKE2b-256 364164ecbecfcc177eb90113fa003263f81c976c5e1ea056d86c7fcc0a98b7e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a0b18fae58a3622110f2f5123cb0687da39840eec53090696eb8932c1c384703
MD5 c77c64f7f223ace019668328431e90e7
BLAKE2b-256 b4eef5fde53bca55df90f0c3a2c9f8c032a5a348ac00bc7d16a53565a6eac8e5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b5cc4bba740e0ad941733dd79dd664b1d1593a0b721fc40f69c53341c3f31a34
MD5 3e752affceadb259a3a3c36a22642824
BLAKE2b-256 c93f550df6100bf5a2b366fa14d40d1574e8ce84b4ca07d1a8981183d2a052da

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb77b68a914a89dd3575ddd2dfe6d85381bc2693da8b6742993085ddf17475c8
MD5 f97dbc36a3e09253585ee04cd06b3044
BLAKE2b-256 1f04738cdc89651a20e70de99bbcfd99a060991211e485d796b5c6d5f9ddfc49

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f67921a053e57592dc4d78493ba5f80bf24a3da9b45f32f4e19589846a31067
MD5 7f8b8e39e8b7b815b1c5838f188b4a9b
BLAKE2b-256 2108c82ce4c7a286097e979e765d10bef98acdaa3229ed0355b674a8a7ecd7d1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b28c36719a63946141d8e380fcab94cac8edeb93f5df18739d1f0e9e209eb9e0
MD5 18d008b878d75800a492264bc93b8c1e
BLAKE2b-256 e9d642641aeb570e16d320d9c15901054be9a597d6b788bcd2e1588dd7bcc5e1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d9f29a250bb69828e985a12c0ffb7885074d5aa3c8cf70770f02cfb620f093c
MD5 d2959634e77f042aef61ea32eaadb36f
BLAKE2b-256 1fb7bccb751ab34683e272d8cec40bf64f215b3417ecfbfad19238917109688f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c0cc59c8d8026dddc07c27175af658aabc701f0e67fb264bf3102fb1862ce6ce
MD5 414f56c498dc772752c2d04fe43ff23d
BLAKE2b-256 60d864feb07a1c82dc35209e992b05bdb66dca6e8dc2ff76f36b4a3808b2930b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b494e8e9ce8f5f4dbee59d066596e98014974e18a8ef1acce25bba4f5d10bcf
MD5 b83fe337c1d0e78976b7f3db276a27df
BLAKE2b-256 f139edf09191db289a6d1e8d6e34a6ed005e8817ef9331a07ac8a1d4caf3f418

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 98cb49da5edfc87a096c1cbc047717d5d006428a33fe614f9c05471e37a5fb8a
MD5 e87144b13ba7cf5bc9b06372f774bbff
BLAKE2b-256 9c7a4db0ee7a5f6d38f280d19a5ce7e3f0608c470d3ab54558d2d289771971b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 babd732b688556e8ba2e53d654fc2d107615d2a78ab0ee1a75864cc2dd95af07
MD5 a031af2d113cab7acf6a8ac7da469a36
BLAKE2b-256 3536bb799dc6642c82e609bd9a20448ab11de71a020ce958b4e9508f8b5e0d70

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4869f799d378b03b3073e2359466bc526c1ae1b0724342fa9eaf6e23e50d7286
MD5 570bfa0196b6ab036a43bd747e9cd1bb
BLAKE2b-256 6cd022171a6eb3cf310343ac171788dc92c3a36b3eade51c6124d65d231bbc15

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c8e8a41c631502d99883f819dd03b6d816c96d8ff1f89e05d181d39ec74a8f08
MD5 6fc2d8acf0b10d43cdcefc498c3e37f2
BLAKE2b-256 d2882ae9fdda12908e915717ba983b6b0f829761d036213bf7d279a0d0ec29de

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bed8e1c3dc47988bd207f0d3f38800bec68fefebfde93e7b14a5fcf472537dfa
MD5 8554fb407701822e6ab32ee16e41c760
BLAKE2b-256 0f6b89a71d0d5d45c2814c6bba959f047e32022f74565041e42fe1a61d75fd4d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 da739c272a140743cf9392be5aa2f77c86f53015d3b842cf2c153e3966cd346a
MD5 532e53150ddf8c62e1c0e16f13349ba4
BLAKE2b-256 fe6bdc41bc035cbb6188229699f2f8afb05f161eca5247153adfd7cd406f56e3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e05c80574a599902bba0c6a11b77baa9db46f1d7df6a807c335f7d8f499b90a9
MD5 30785592e9d7f7715f47e7389cb851ad
BLAKE2b-256 aec67a09f5444cd3d25d7a9238ddc701a54c641248faabfa90e1c8e6784c0412

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.9.dev202307221689958316-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a69d401a2ee50fd3526a66c5500397268d68989c4c05c2cf710dd7ef659617f7
MD5 8b536144439feab493ec6ec32c27223d
BLAKE2b-256 28888b1dd253aa73046c75282a35002ca6ea15421fdf0fccb99cfbbf5ae42933

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page