Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0f823a563b8c9d91747e13783d8d57c7a5e9ece18aed73504689bd460413282e
MD5 df3a37f5bccebd80203069053368d3b7
BLAKE2b-256 53cf4cbb8f285fdcc9f88841cd4559b20cc1c619fa645be30ba49bf0dc44aceb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ab981c6b2f5a6425c3a0d7c953a72ddb041745f013dfc108c3036ba82e07675
MD5 5d501ffb8bacb6faf471e251b518216f
BLAKE2b-256 4bf3637f17c76499c015b010bf587b8173872f32b737bebd8675057b65fe4a72

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d76069e618f041d432b30b3a04e5577f0bbd3b7205f78cc0a43a1f1b12c0896c
MD5 e298e21940254a4b29c3f9efb3b1e705
BLAKE2b-256 6a5627599c5e6d830a165cb21f399f7d683180faf87c2dd001193e395eb3bed9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 256515343c47fb87dd1dda496d2c404b284e733ab5909e41524e1f7ceff5e5e5
MD5 0cd523e48f859ef1acb1519ff092f2cd
BLAKE2b-256 d0deeea467a2ec23d3eab2ea3c34b8062c6fa1103546ce668b4f09ab9c17cfa1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 527aaa24df0c10835e214684d6bea3dfe22a90963967c1bf9a18cc774bbbc2b4
MD5 12a032d0c34b8ad44db228662cd437e0
BLAKE2b-256 bb89545c8bbcb2a2cd2915e2e3ef64a3fced5d99428a5086422ff239720056c6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1e821b426691e149fbaed91848712b4370a85b21242942a58ca092ef36564c44
MD5 0e896f1e97dec4c574d066969151994d
BLAKE2b-256 20904127a75bec98958f08901dba5ec59852c149787e246dd81b8de1604ece25

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 709b358d3b6a23a79a2885c3880f8198dc478eb21d52b868f97654a7e8589dd1
MD5 c8aca7fdb1b648fcbc9a1e652671c318
BLAKE2b-256 e23a6c2465d46b30986e15f44f5502dd9a5417d6eee6ed64fb12655cdaf688e7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d4a60b13efe86fe5809596d32baa40b08b8f5bd9bcda9a9c8f4f95ed9e1bbf4f
MD5 37ec17ed09495540ef550b440d9be202
BLAKE2b-256 984abb8969ba84613fb541229d00eada96215d5decb9e8795b8acf078195d53a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 086ecbd50d91ea84b8b2460d0cda36f37ab4561ca26826278b86194dea90df74
MD5 c3fc5af372ab110c130e35bf4f0e3856
BLAKE2b-256 e0db54ade4035ddd9eb4c3166bee1418069bf62cb537b27c46e95210a3e5430e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41231bab9213edaf7c008b19232b641e2181629e690f5c270143dcb523f77caf
MD5 97c8018ca492efe1f1845950c4eed1b0
BLAKE2b-256 1eb864b98dda941f6dedadbb13089637c11c64417e2bf3c6516ea8e667290b8c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3563b15b9fd6939e228e77555d9f12324b9083840fccfd67d3c1b3a2afb764f3
MD5 c6425bf5ad8687f34ce88c4e0338c6b3
BLAKE2b-256 0746270b8b245feb59d5f249e10ced72a02b0db3ac8b574dbdc1c90e197d19b0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fc7ce02b66ebef1ba51f2f3d3a519a069c60e75ed121c8a67d905054960f4c5b
MD5 1d3d504fe0bf0de5b90439dff2389120
BLAKE2b-256 eac8f676c0082bf773abbfb953663810bb2496b50028a7751c9f377b94ff3257

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 15b04dbc74060885ffd0c4218033a49a2e7ee62087ae36390dec4d4019388fe4
MD5 f34c5e2baf90bbb0c38cbcffa71e4e96
BLAKE2b-256 091782d79a90cb48dee1409db20dc1adcd7f47319af8f42a53e34f23d94e3c95

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fd329d553bcd106c2ba909a1bcc5dccd241a7def942af455839996b4f90eec9e
MD5 2c29050007f274e87b3c31b06f4c9432
BLAKE2b-256 bedec2904e1772280cbc2eb826c626674fe8266add2c7f67300d9678e547abbc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f52f6c9c53dc096207c6c4fcb71555fd7209d0eb4637fb804521183d72487d12
MD5 d27654d3b70a86542626ef90931ea442
BLAKE2b-256 b634f45560a112b5539a420ba33880db3e62383ab04cae1926bef47a28ed7d57

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 60a75ca3e3bfa82b861df4e1b20f76d88f0c77866a49a53c9fb313d9f8f14e6b
MD5 acc48243b6b31522607c8700603d0635
BLAKE2b-256 3ccfa393fd4ff74bfdd7bf326d7102f596db174a1761cbff19c8ac4595cdd65c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c220b417e355f7cd7be8dd0af3fa22b49da53eef65684d5ae3035da0f369a126
MD5 bbf7a792eae5b2db72d2a4c57e5c92f0
BLAKE2b-256 86e52b5a829826ffeaa0340794b2bbbb0702fafc5f6b9c5509c9a4b659c1b3f2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2e212d2f38e1a1eb1a7278aeaf71a908a5c2ddc4f39019fb834f1d006988ca20
MD5 50fb58ed5a14e895f53d6b08c99df5fe
BLAKE2b-256 c09a7fe271ef3003cb85b51585cb07baf7e3a07f8c8da594964331b913c71a34

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5c7bba98318105cc6edaf943763b79d78c83dd89e95e3f6e222cc7a0239528e9
MD5 aed0b0693f3258ba10a98b0ef3fc3abd
BLAKE2b-256 120da625cff3cf712df9ae499d1401000e9bc30afbb7d1085cc2de957862a7fa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306111686326557-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f05ab1d5cc96f736ba419a267ee9f608d257088f1cba42dd34738d73788b28e
MD5 4deaf190714028dc4b1275091f0d4ba3
BLAKE2b-256 13e7294c0b354dfbf5e700c9f8f26f6ef9d69164ae7eed77c099babc81ce753f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page