Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9f96259e039fe384d7f7a187f6bc2f6ce0d500e93087b76b9f9241e72242f3ca
MD5 5ff4b8b0f53c722932898924157d02e1
BLAKE2b-256 9d67b163dc743eaeddd5887f4e6e1d9bcc5b7840773d225de7df1bf302a517bf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 793ba435d626108328153cd4579ef9f587254b48053b9d69f143af4dc3ec797a
MD5 58f6f70149ba8955838ec01337133e4a
BLAKE2b-256 a093177d97f355423109a91b6d2304f75df00bb09173cb27cfbdeadfd83a8be2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c57484329a5e6a7dc2f5d97c1d4f2526161e7fbcde7670431a2c017e9e48e83
MD5 e264cb0650e15484af938615d52fccd8
BLAKE2b-256 24b6762d20485ef6a8cfa5657953e639ab6c2ab31524cac3fe995e669d17244a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fb4f3358ba1e8a6128a7b28fe5bb1f5fbb6f315dabf4e3c4d77075cf7ab467da
MD5 4c8421de4a2db61f6b42167972a09a6f
BLAKE2b-256 3a42c35cae60c3bb836cbf8f83408a9948c2b1e3ff7d61adc9ebadba594c995f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a39a8869e4b8617957275f56870c29e572d7a7d0dc7a73d2c916974d72e5a137
MD5 5b81b31db46587bd71e71302bcdb4cc7
BLAKE2b-256 bc26cd89a0b222320cd81aed3769cb92e76f4dc09848ded6638c2f37e8ef261d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 af76bd85e80406a7904501354026847e33b76f8d53cff6572af88563d75b585a
MD5 38ca72d5b2ac1fb2a0923550c1f7e90c
BLAKE2b-256 c944b26e662a315a819166e1303f6c31e63d2512ad923dc1805ab328fdf4e18c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7cc6e5026623491f725b4f44248df34ecafe996091135652f706a3850c006dd3
MD5 8af7ef69b031d8ad383bafcd2a331582
BLAKE2b-256 d9f595c4c6c6665eec80e791d8d21d1e05518b1856dc9e229564e2eb4a281c03

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eef308301cfe03eb1d1bec757768fd65c9340928a4255cb6ee42db56eddb87dd
MD5 d26b5ef37787e13f9bf479dbb76b6dc6
BLAKE2b-256 cec5437bdb423a120dfa4c408a249baf6c14f87213e08c4c903ac67022222695

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5e583d53acc7d5b09b34690ede064cdc099508889a5690fea30c56a6c15638c
MD5 630b6eea1bb8c90c8c44dec76b52c1ee
BLAKE2b-256 2c6fba6fad3a3f1abd7f9026d2f6aaedc238fdbe0840db0253f747bb7b98777c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bc04e701ff6cb51127260d9dadc520b9f969a1984401693dc6743017978e1547
MD5 9cf7ed1e072fcae51bed2aa7a6aeec91
BLAKE2b-256 a26e5623d013c83fe703192e3f2343b61c12955953fafe70a92de9c5bf82fe53

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e7e54f88d441d21470ca6cd70b71b1b23d574772826f7005f40c6c782d88d6f3
MD5 2c6fa68b48793371f4cfe451cb35006c
BLAKE2b-256 c0d420a48d2f9b4e252fe76b5a7e22de84caa21e8f08934645676fb47376de73

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d54a00bf4595e9e3efd839a7d03c48a0ad4dd4f736c1aa2ca6c289bd292ba313
MD5 c7e47534d8507f4f1479a2e22fbade8c
BLAKE2b-256 1dfe9f064b8727677aab440165232afa61768ca27282db38f110f89684cf6b62

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65305c7d3c6e34ac42221867be862eff505fcfaea28d394fad4b5de77f0655d0
MD5 d2a8c76307dda6c56217d9dd2257e991
BLAKE2b-256 4562dd720f2d673557c329a5ec57bb803e62e4984f6f9885261afcf84697c0ae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eafaaaaf0461e581d864485e02267c60bf6753000713a36e0f84585a1b64ed89
MD5 fd9b4ddbfe377554fae48bc515cef477
BLAKE2b-256 07de0c24131059e560cea510a15abda3d85c3cb19c2dfca50fe3033cedc6cf47

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f98cc272f0fffe34f0a73872d3e9e727737e71c0d8da651beee6366dd95c51ab
MD5 40a97c4bc99eb9e420b17fde2498c6e5
BLAKE2b-256 ade8937af8c99112de26794dcf8393748b31050c6a8d78ec0e0df2a530ac190b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4d9f6e126cee147e11060cb62495810ef30f7e695795ddc30510243c08df9f3d
MD5 c0da4082a5809a667f903f18d6358afd
BLAKE2b-256 0c715e062cc6a812439ca2201151d99fbc2642c2820c42f7f2f48b46f95855c8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fba25ba19de628cd25042eab3dbe4cb31a78f3608a7656d55fd1ed01d625b004
MD5 caa1c1bfbe3c8a4587baf40df49bbea4
BLAKE2b-256 a67d361d507c53150dd293e0f650b854db4817458e967765a18154a3a81a070f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5877475ae2711eb82e5aaf8461a6903a79e52eb33e8923efe3bc85c5160af00c
MD5 98592eaadbf5c2f9c4c8bf6d8fcb389e
BLAKE2b-256 0254851960043d24e0fa04a401bcea8e9ed1ad811eef5375d04059900d06a71b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 291e30365f7555422aaa709e669229e863ef6c0cebcac45a6d00dd5d9eccfcd7
MD5 68ebb604b2eda00196d89f8a13f5b815
BLAKE2b-256 ec7f463cd86b7c8cfa38d2fd82fd2a436f2a3570f1ca770e97a92f0dac7275bb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.8.3.dev202306121686326557-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bf42b9e0b91871b5fe437a0b7341bb797d03d04402e755bb4c403d5f41c731ee
MD5 2c1c3020f1599c7d789b89c4d39f8117
BLAKE2b-256 6e8c0450ebe0c4e9bb7c52748085f15ae82b67f3700d97f01bbb88ffcd0951cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page