Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 53f2cabaf659a7d9167a54c9d667bababa03d889cb08843e12d25bfde9967fe3
MD5 663b3351457beceaba89dec868c474b2
BLAKE2b-256 18688f750c978177c07e844bbd82b8aea2c71592815a9d437a4a71336a446971

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77902e5ca58724848298193ac8b293c1869239e2b3faadc5e607ef11b277147f
MD5 aaa8b9dea0e866a52315d45623aefd5b
BLAKE2b-256 108b17e4d033b94ea47ebb901c83a71f8fc0d1729d236acd80b26412a0cd13e7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 969559302cb77fcdf43f2dc4a22be8f31b0ead552dbafd2bc16d272e7c2a5432
MD5 acfe6c7b5529d366c165cb11aa86021b
BLAKE2b-256 116ace844a4123e1e39815341aff90a0f94d6413740c722b2116624f8ce3e66f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23ec50dac6840712b7a17ce93e1e6c9bce1c925c461afe47c69c49699049df07
MD5 8ea4e2432aff3b8b192e7e1c53fc304b
BLAKE2b-256 8385f2f1384b8b0fdaaea0cc52e1da4e6d244926fc515808545e299298cc243e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da2c40a824606f3ac22c28b291f18a86f03252714facd91dc0250387d0f690e7
MD5 053cefa9f5aa911fcff95a191f8a8b26
BLAKE2b-256 f2fa1fc365747b8446b91b615ad0589f27ccaaa5db284a1f31b2e3153fa52a56

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 54612c669cd3a3208578c61dedb023f88c9b8bd8f5481ddb6099377371c8d218
MD5 ec5c9f479b8a353ae0f299252b36e785
BLAKE2b-256 fc42ef694851eb5a89d8d333d666016272fe260c98945d189fc1747ef8ea1dd6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1548b22ce4f11532a9253abfe49242632180b1dbdcf9ed935cacecab38011f00
MD5 78b19014ab21a663f5cd64aab76b8da6
BLAKE2b-256 c67b991df3be2109d712c34abf61f592b31c648b83d8b6aee168c2e1f9b81f55

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2688d34839133f7c20f63ae44ddb5264d610ff0b4795f5e188658087bcf1e49b
MD5 dc41a7565c756d84722930409b04aa9d
BLAKE2b-256 71cba2d6eb819744911ed768e0933099cc6668bd39b4ff95529a21ca8a02c8e6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6efca9472434fca6526aebea6ec638e42463e47751e9c978aeba91a97e002f28
MD5 99d2c26cd0638277db9c9714670902c7
BLAKE2b-256 478ab4d1286cde94dfd5983dfb406462dc94715dfe5de00ebd4415ad2f5d206f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3f84005799ad8ca5f334b468231ab6c2bcd22bf7517a0c2783e033fd7389cb9a
MD5 15c83650735dc6e3ef55cd3807c0acc1
BLAKE2b-256 2870e0ae9409715478375c538b159a873348e3d6089ca694834f65db09a48e25

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7867f438cab36abba5b67e7efc170eb5d408de3c2c6475e2d9928fc597f4ae16
MD5 4fdcef56e5fc87c401842eef7b7cabf6
BLAKE2b-256 94b4edc99fdbf9a25f3a088c74de7027708cdcb091b819ab2fbd4cd14cf17399

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ffcc80715659499f62df67d912fd822b3dd8a3843e16d4239cb1dde0e197006
MD5 a4aa55f98e685d149af3c31dd6365bad
BLAKE2b-256 e01c6ff1978f0e4b4389ca72b52bb95e4af8d3ae920405529dafdab97e3c7891

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a9055a6627520cd759fe366292043180eb2c487f0435738bcc5e8ed8ec741f39
MD5 045063585832ae5a61a9d010ecf979e9
BLAKE2b-256 6437433e0f5e62cada33e5324d774a12ae9cf9a1f68d7b850caa0bdb94980fd0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 440081912a011b48e29eb47deefda6f64c679225f76e9b97360bca768e501df8
MD5 22c880d370e7eb42c96ea3ec1eb889f0
BLAKE2b-256 0e28fb840ab0f4f32a68e715a8af9a336b6c4b1b289217d63c34b6a690fec576

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 61c12b90fe310b81a3ae6c571d30cfe299e39647a8f3e094b6517b06f984f41f
MD5 195cec732d86783d6710d48d3ba9a173
BLAKE2b-256 ff025a76ce9c0a0b9434c74f0c6e2350c498dc3743084fe39f73b0570ddedad2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 188bbb467b7c8177b938c909ca374a9995012cf3d4b4a7937afed270576c2400
MD5 535c9af77eebb3eeba7636c32dc165c6
BLAKE2b-256 38f17763aeb9a6fa0b4ac68e2f16e0f52f43d7e22500654932f29942f66f77c3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6dbdcd3e6c433f8aeed44cd562ca24ac21a384decf38e345cfa95ae199caf61f
MD5 17c3f573c468922eb1ce9017e51a733e
BLAKE2b-256 70ce130e3f8e60735ad558811e7c4e99ed9747417a0d91e97d5d55d65cd3b20f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1607a23f1d36a42299d4ad3b13fe83c27072ad4af1609c0251afcb7d5fc077bd
MD5 eb5f0218c275986599833acf7463cc9c
BLAKE2b-256 4ec7db9d2da4840e710d06687197ab24978c2c0d4160de1dba487ed2746db36f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23c167f152513fdf45afb0ecf24af30a97c119bc4273aff2dd887079cfe3d73f
MD5 b8ea5492a3e4abcdc7809deefa5f36db
BLAKE2b-256 2811c48c3deda386e037ba9c9955993a50cae5a0ecde2dcdef5014edbaf3e571

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202307301690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e00364ed6a9f65971b468b3b8eafb798b9e5c3217cfd8bd0ff4d2e5490c3594
MD5 2fe231ad186148056450adddb6388517
BLAKE2b-256 d5807026a9f34a8cc6b6b114e796f459eb4ab3d3fe46aee2918dab61ee1f6279

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page