Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 476e7d736ff994ca30de312887f7beac59a8c96820d15d1e3f1b81e9c68f96f4
MD5 741b1cf1eef323546753384650f3e31e
BLAKE2b-256 14eca6814e7453b6506a17dba43091a72443be230bb087997ea58f86872b8551

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4934fd4f8e8196b2fae63723b771d9671ff3e16592fd4259c6241a51a16e3291
MD5 68abe36e1713caaeb568c8d81eaad717
BLAKE2b-256 5273855a0dc1534bd8ebea4d2357387f11b3513c12ea4c158ecacd4f37f0b434

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7244ec95689ecb5089d247ef14c126ea269a563aad7055f6ce04c16bf7d793b3
MD5 6a8b86147e0501c7a903b7b17c045034
BLAKE2b-256 bf35ba5925ba927418ac9824382e9c71b111f1000cc6b16a65dce1c5be099226

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 303467218c9081c807f7b6ada1c83919172674b28c48577e639d598b3e640767
MD5 f63b00f866b17ad7306d3456f7835077
BLAKE2b-256 1756350d38271589cda19c6dbcdea75d103cf8c8fafe380e07f05ee38ac67d9c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2dcf424e5de4314aa7cc0beea20a27e138577887b65acdbf51363003f1476a77
MD5 7640239dfc347fedc7d110aa74a3a17b
BLAKE2b-256 14abd1e1ad5fe8c38fd373ab8218646a9549c70f4d8f71694726128b594cbba8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2c9c3a595cffff6be55f89c45247a83523d55d3eaf120f1911516efab434037a
MD5 93924d30960ff4eb0581c96273efe2d1
BLAKE2b-256 1f0e102547061281c4b539e32efbad4d75fb1aeb4d10ac24e892b40ae4cedfd5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3cc39cfe33a8d7385c02bbbb56f5ce13d6be9fdec2d7862c466373c27a2a25ad
MD5 1fe56b75e0f8b918e2f0f019b540f6d1
BLAKE2b-256 3c7a20db54a0832277b6b954a4b2b17ab68aa8eb2b91db66cc6c4bfb84442378

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 178709f5dcd38f03a85894391707b547a81fc141c590cd5e778c2ec90ba43226
MD5 3a7d8ef681be35c5c67a8d124671edd7
BLAKE2b-256 c4ff50fdebe012c49329d692a8a61cb1c6d274186d5ac19971fbf74fc81a5762

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c2008de8a285e911c6b2a0433470cdbbd81e78866edd904fb056e3cc4c0c0c4e
MD5 383e285bdba4cac42477bb5a5f62297d
BLAKE2b-256 7bcbddf1b062b48415c1eecd9e7c0f82ffee674dec9d096f4bf0eb64a9cfad7b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6c79bba1fc31009268ddc2348ea313dbe000989825496b1b7aa5bb80684d669
MD5 3ab987f79118207801532faf21701f03
BLAKE2b-256 f6edcda6d74534d3351f4adae41bb625a932113993ad4e3e2a0cf3961eb330e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 69ea6506c842c6222f619ab2e5e581662c1201644f64421b7f62c7d1c9047b8e
MD5 5560c3b58d95501e8047cf617403e5a9
BLAKE2b-256 57514b5688e4216a662a0ec3e5ea409943c0675bd2388b56aba25708e81b185a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cf05cf77fae7e53020805a2187bc4fdaa37853c28d1b0070a99bca31e2853311
MD5 4f97bdef9dfad290fe72b389a792c2c4
BLAKE2b-256 5dd8dd992e9cb79569bc493ab651ad6cf0499c919d5937c366e692b7b3c87f65

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1899ccedfbc7f4d58076d95870d10ffada18298efbfab872d9a6f102506754e6
MD5 d6ac8af15b01dc89075475e170894a86
BLAKE2b-256 eba3afb89df93c685496418c691d15827f9bb4109dc8f552eb712bde75abaade

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cbbfce44b1198ddfd97ca1501bb6a58230562b794db833189b6b80656a0a28f0
MD5 c1eaa1a62e1a2c6705c154880a90fcee
BLAKE2b-256 db6a3ec7ae8404632766392d2392bf79db4fd5dbbba1779fd82e837c30fe3df3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1165227919a971af11877493e4620e8228337f92c8b6147c0784bf552b60d1b
MD5 eb33de8ac94ebc83922d27e0e24dff98
BLAKE2b-256 a550361928ddf58e88d5c6097945530968cbe09e26de42dc0181957ea94723a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5180cf2f7ad4d95bd91babba349603aab850efde8f0f5f363d3b979ab440361e
MD5 1a713fda2fa41118296e3ddaa0d7770d
BLAKE2b-256 5897b3487eae9fc1664995d8ea13a1d8ffef65d7ffaaadd69f3b87414e25b1c8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a1583eaffa892d0d7b5b74b87e20fe29618430baac95c96a8df189afb9d2442d
MD5 0eb71c83b93ebc7ffc255b466b2fabdc
BLAKE2b-256 72bad9c7b874ee6ddc8d379148dd3152bcdce6e75e131427c40bbb900c859e28

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d9304501d12d02d7c093e4f30b10a473f3cea0655d717ed0598eb1ac54847ba
MD5 40fdcf25a1ad89031c5845acfd96c8fb
BLAKE2b-256 086d1cd221f02d1d5a8d668c4d3ace9135471479c28a3cfca19484b893f1d476

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 98d7e67e49e1fb579dc40d7ef159ba5538879090339375e44f032ebe38885ffe
MD5 91db44805702a142f8f415270b9ee78d
BLAKE2b-256 0f382d8b106bf67a7d1b4b54e040a4fea72b8aa7348aaeecf2fe2386980b5f72

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308011690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a23ad9b45b6265ffdf95302203466ecb6a7a6e0edc2f17913fbe82cb71a98899
MD5 f681b6cd9542e422b9035598140df12e
BLAKE2b-256 b964dde13a58ea35735b5227bd0c0b3387dbc7abca57f8967184f4e93d7a2f0e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page