Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d37e3808a82af3cb20d65dceb2dbe317269f956448552bc347d7ad2039b165af
MD5 ea1d05d7cda7c2fcd2099b284ed1c733
BLAKE2b-256 a34e8fe360e27ff7fafc7334e0d01f741263c51cac2b9bf253e75b082e572151

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4db70c9896d90a9e7a1815539230b9edba451e28973ae089ed5121b0de6754a0
MD5 f0059ed18f29cb023c10e323f3253a56
BLAKE2b-256 613b56626baa2a3d58a34ac30553cfa2e52c8729cfe6fd4c6928bde10962f194

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47a806945c90f8166eba21bc57d779e94888d7132d3abca24f19e3bca2ef10ed
MD5 2a2e247af82355d94be932ef4f7e8745
BLAKE2b-256 52bd68fd72a074d519008a93ed31951ebb30cc05a4323bad1c166564b448d55f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 37d959b214534b2cf7cfcb4eb993afc1c5c1be53e879202d0b66c5f252d823c6
MD5 c7527ee005ab209cd4a4e395f3c698f6
BLAKE2b-256 5b172835f548282216dc580aafe3995ba8d8a9fcc3ffde765060ece7509ef587

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cba349f93689c764b4ee5f1db1cf3617c1fc044b2a9471f5446e747cb1dd7fda
MD5 374c58beb65d756b82386587e750792c
BLAKE2b-256 ad53d1e30b4e65f087f30716259049f564189d86aa6e1f5f37e21e0f7a5499d2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8307de0b345807a167a51c6ee352011b4ddd743fdb1172c9c8f5980789e6e2c1
MD5 24846e9067179788de3881bc25ac5e3e
BLAKE2b-256 6ea3a64f514501245d18bf02bb37d2caa40e6620879eaefede7ba91e88e84170

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64740bb25f23aaf22fe88c9e852595edee93a3fab5983e92665d436568013160
MD5 de8fbf0101e061bd22b966ad77098b7e
BLAKE2b-256 e390a6f96743dfbdd5531e6bc60c0f814680467f3724020b0a5215be8e24e532

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57811c1b13d6e62d3eba944e603edbcc1c7097ba1dc49bbcf3a36be2de55e7b2
MD5 81e1a81999a1be8915961f509b4f67a6
BLAKE2b-256 d3dff25378f40fe50ac6071ae4c11e2401834c4ba53d0b9755c1277e08267307

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 409e555fbdadfae81039db3950abd1638733d4d818e012a1f54bc536a6f168c6
MD5 b6d747d4a1128d8b72397486f51d540f
BLAKE2b-256 b343198d70fed39a3c3b99765e83a8fd64648269294dd5c822dcb3f33f2e8020

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4373f16e15a74b0c089951a742c1c8dd3c3846170d6ffd3bea613bfaea16edf
MD5 209296207ffe04827a98078612136ac4
BLAKE2b-256 3923d9514f6b3c776c16d084003284f0d3e6613116a0ffb47db6bbc48fb8da3e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 58d3f0483f7d02223b851b2e0961fde2e64a5c763f580a57c9cffc0ee51567ae
MD5 99247cd33f82ca6c29e67dc836b6d4e8
BLAKE2b-256 161b6cd5f0c11dadaa6c38943df8ae492d138b7334f7d4e4d59ef99af9ca496d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc1c4a350c61fb94f159ee1c15b3b076e54f9c089b22a938ed9b00625ad3a357
MD5 0e2199b9bc8fab4b804e441db9595cf2
BLAKE2b-256 93bc36ca2d507ead9cc8b4211b02bf9fdd96ba573541ecaf9fef3946c265ff20

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 16c390a66092713222dc4d49fc696ae1e0275365aac102436b63a3960daa662a
MD5 9f46a6796723d47d725b9656466c1f71
BLAKE2b-256 46b6b7f9c34f5241c8c1e49f76792d6d194162a6ab3fab1c48d8b52a6ce5dda9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1353e294a0e100e335ab7386011f0ade2b99ee8152048fbf4d93bfa07e8f4228
MD5 ce731b126380f3250d8751fcb4aaf125
BLAKE2b-256 502ec8149ee14d47c8d9b6cc6fa26f29bb624e7cd9d0508a455dd99f69b40076

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5490e6298d4838e42995070be7867a6c0d6eb9f6c34ef40cab895be24c66edf0
MD5 6821488b2559f3d17169df2ea0bb88e4
BLAKE2b-256 364c9cea8643ad49bbb34745a1862918609b34c8ddf546dee61be98d0c4c7ef1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3b4fcfa53d523b2504a387c88754f101e152fa90fd742758d07da990e5cd14c7
MD5 a7f8ecf090f819084529028b8618fbd3
BLAKE2b-256 4612609ca378dd9b0a6b2db31ffb11b62689b809608c6c4db4b41e0b75ebe47c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fc3a0e6dff678cda9b491b5439f5134c8385205f1ec420ac689f215acb76400
MD5 28cd7148cb05b907019525817cea7b44
BLAKE2b-256 6448652cb1d027935f2d85122ae7df35ab9ee5a55cfd946db22e69708208c55b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c6e5fa36fdbed098209e68b8d649660ac3acb6b6e4f994d708d1d62a3f5a284
MD5 ad317356c8ec2954bc11e9f318f04503
BLAKE2b-256 1dc1d16178497931b711a9a27e3e570455e83272c5e2439f37af252d3f63134e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d2a1c52bd59bc20500bf4317859dc88b8b05484eac124d1d446ef4fa4c809e1
MD5 1d8fdc4c5aad576ad40de0ad72757a7e
BLAKE2b-256 fba8cb16f5d76e2513d7f5ab5b5d8ff9e4818c230d09b28228a6816610e0c4c6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308031690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 90fc661dab0a1777a897030ca06dd2ff9856a74aee37996cd1d6c9570bbd3734
MD5 9a95760ea4e2a85dc8a20f7bb696d580
BLAKE2b-256 82b102b38f30ec7793d10d237a94223ac38491783750d97729bf9a8720190b1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page