Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 deafb50a8d2b27d9ff05872120c13fb7c82c47f954102b6476489a17de57ebaf
MD5 b5901694296bb607e077f8602a050fd5
BLAKE2b-256 b09a83fa11c75cd965232979dd57b28a5ef2c6fd42245e285d23f1c3bc0ef506

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5098dced583782f6df3ba53ed9c1bd7f770c8f6f8368e817eeea6cdefbface38
MD5 0c572bf376f23d0a3897f8d8b3e318b9
BLAKE2b-256 b32ab094bdfd4e769c8b121eb009339b25b627492a5d97427c33400c478fe379

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dac65a4fec1501054deef890792420180dc02af01a6041c5f0640885e957dc5a
MD5 62d4808c54fcc8578638565a1cb3bc53
BLAKE2b-256 50f975db4f8a840f8c4d9931c7693ababc0875c4a72460ca6f6b3d31936719b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 426b0f7fc7532e557fbb171a3e471f8f8bb6483356c86e4be1371c3c1d388596
MD5 1c54338a3d448c7e02dcb89bea93173d
BLAKE2b-256 22e9c1b5bcce8c61b21ea35b7a3547f854b31158c2d44f6103aa33d0116c0c25

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ce959cd2c09dd30cc2c94705770ffe7d3b5b05d542810f146e9a88fa4cbbacef
MD5 09595553218a6667cf591156133fa106
BLAKE2b-256 493196277c977217be893ad89adc0e7fc2c7f81adf6355ebcf5119b4e7990f8b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a6b46a51f6bdade93a58a8fb9107fb49d603bef1bcf53c7013e2021431ffd5c5
MD5 98b4b5a08ebec261bb0ec4311eca1a7b
BLAKE2b-256 1c21f60c0882327e8fdd0607a9656d42142574102259a759ea9987851189cf5e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e30bb6a97eadd283090c60a943dfc9b0acc551d953fb159c67c9d45bd6e9c663
MD5 12ab928075751e917fb9aba9941887cd
BLAKE2b-256 0dc5213c961cf7275c4d8eb177014926b6f03fd44fa93c200bb4fb1535b73795

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 56650607af2f7406214aaa0ec8b638d5c83d76f9220b8028e11de2bf7200e7ee
MD5 857f9565d512019d99f1aa74ce5abeea
BLAKE2b-256 21f6469baee60b06e97a0d920d10f5e59ab244d85c9539ef45bfd4075e9d82a6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47904ac914cf0705fb1e90af1990003d4ad80646852a3948abf12948e1025719
MD5 3e1887a815fabb86906ae925027e083f
BLAKE2b-256 fd492b670560c052564266c167830cba7b5dc11c19aba093e34be64d86a7142a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9001cf84ad1a2edac2109ee2d81e4bf498b88c368371f75b778450285243b24
MD5 347009182d8f862dcd80e7481ad7907b
BLAKE2b-256 f709adcaed31882d697af1a780b9254b3874066d35f65af1ec2306dfb1688e0a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e4fd9c8a3d1f26584272c0cafd98b6e4cff94c939f38b0c1a8241f0fee4f6183
MD5 3a08be566c98a971209cc6cf77d96e9a
BLAKE2b-256 e256c444ceb897fd736f567db74177537b7375166bea162e7cc27a5b50eab561

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8311c6deff0a002621a2a7f788137654a1e085802289cda77fafb8f18f123195
MD5 de6418458ee17fb31c6a7418a54e93ad
BLAKE2b-256 927ec516d5b4baf2fa0fb537c3c222620e437f5951f285740f6b1f7905737ef9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf670e5d73b7628718e44b21383762106c5bc7b0d01b177c1989597e5dd8c7bd
MD5 9d8c9d4d0a40f1b1add9abb2896199ce
BLAKE2b-256 e482403bfc8935dd385d16a57c1eef3e2d8b93a56face7fe57607609f98863eb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9005e2d072aff9ded2c3079aefb5ae660640d67c7f5d4efdb5d101a939d82c3
MD5 64125c1ffae61884a65c46f31d4551e6
BLAKE2b-256 8ae4b8cb1c3f00a7447ca50f849967f83cf50bbbbc62d14a87970a6cb0eea2fb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5357ed2aa70b884b850449873334d858e3c5088c5040b8b50b8f03dc6140af52
MD5 1062ab47bd081a4702b15672942a315a
BLAKE2b-256 491dbdd8139f4f90ca170ae2c6faa79061952a299f1c52824f470b27c3c97c6e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5d7ea91f4fa350f496b282b131dee9bb5e4025e648ddf13e12958331b34bb2b6
MD5 0cc18804d626110b76e3ee84636775ad
BLAKE2b-256 5950c12cfa413b81e7909b2124522234e11be1fc3b4f7447fa58ffa956432ed6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f802a8b1609ae3481a2662c5fef38bb79bce810a7dc657d02dfd204e4bc83d1
MD5 dd7712af40a64a7a72982f7523849833
BLAKE2b-256 835919ee56bbd2d05ed7d7978cdb648f676f4997ecbbda6fc27576b25b587060

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 98b4a525eddfb9916afafd7d4015b2867d8119817c596d8382139731d3aa620e
MD5 33f3433f53bd0ad1207d2b1d76e62f23
BLAKE2b-256 50e336ded3d79eb9ad6cba17efb5ad253d7c5824507397fd2f38c2604eb4dbad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8290d5c55c3af3e8106eec50b1d4206938ffaffd9a448c51d0a51293bd813fd5
MD5 9fe5f7a6519b8d4ba7f762333d9f1ecc
BLAKE2b-256 24cc765827b71b7e54670c9b3432b0469d301ce3a0fbb15f1a7b12cbfbe33c2a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308051690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 23b6eb87ecd0b7f47c96af222b19f204fb224d09db80fde6e1d1572811576526
MD5 955e4f60596f044dd65c05b47bea1421
BLAKE2b-256 9595e2d8d54d614dd2c1bfe14884ad993264f1e26e807cea7cf209d581906bcf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page