Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fb9b9273ba2e6118af3707447c82739969e85a7003bd5da2808ad8b395de26b0
MD5 e5b061775c16d283dc5293a1226e32fc
BLAKE2b-256 03caf3065aab0f561dd772ac287fcac9d312126b662142b84645a93a2548e3a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a23c66e39c3be014325815ef64c9ecdf04ddd56136984d438877ca4929e5fc26
MD5 d165cd9d609569b24fb2a4231bd4fc44
BLAKE2b-256 0b6f781d97aac2ae5d5fb2882f560c307dff0ce3f832df95b0065dde6d84e9d3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a9f927f5762da37e47a794bb9e897c6570cc9f31e6bd5254501e1e4921a4880
MD5 e604dbd38e9c2bb43350b8cb2edf00dc
BLAKE2b-256 0b45da17fca5bb5a438cd33c5c665cc6f004ee26468145138da1a0bc8375a63a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28a6c44e5e12178574350e8111afba26ec002d442f40eb7ab43b09149e4e1773
MD5 2ee64f0cb656d45aa70bc7ae52935b76
BLAKE2b-256 bcb969aa01db186d9334d7da0639c89829ec6b5d15585c36ec71a31924eafe11

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d2b2c9a15677a0502f34f53854bd4d5e6382938380aac5eb45747ebebaa25b6
MD5 180366577ee26a63ad488a3b7ec9d14c
BLAKE2b-256 c3c773371b004a9621b0e1059b673a4599b9a869ed95d764c533de1f9d3157ca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 007bb3b27e33800af14a4d9380658d55b6ce72619afc8e6d5e6c20cffee992e2
MD5 499c5030c1679884867d47cd69c82d7c
BLAKE2b-256 4efe8d05f6abfa45aef2b5ca4a3d83354bfe5f98bbc06df1febd2ed03b1e1a7c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54d19195606784e9122c49a69e64d3576a3041766995e4f1f04dcb84aec8c090
MD5 3868cff8958156a8f81b5a9536f2f44a
BLAKE2b-256 2727b794fea63b5affaf78bf3ffebfe4c5c92ee766785e974e4e2ddbae6774cc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6060d0b993e92756606cfca7ea2104d58bb69dc107f91eb09890dc42d273e8f6
MD5 1efd2afa404946f9c9d0794f82652fec
BLAKE2b-256 126019a5abf2588ec401e0729bf0523536994282a76c9d7568ed2066e941737c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b7c235c0aafe48f38a7b251370b7300e116f0bf682c2f47a74d1724fe9e4f9b7
MD5 30c07b67cbcefa1850853fef9da34119
BLAKE2b-256 2ba5da2ea138cabbfe1adac47870e23698c00bbc70a322e4f02594f5565c6dac

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b72c5be52ed469646111539afa4dcdc1f69dc9029acfe754a361dfced03836a1
MD5 aeb72c9928cd9fd46f53ba8a0923da25
BLAKE2b-256 3ea6044bcfa4b23852015acb7cbe131208d5741d2ab391091b0130541cb6c904

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 176091eb2f5073e3057ef1ac44ed513edb14d459c2004b0a1635f656701525e8
MD5 86484c23bed2757c4760e7ffc5caf323
BLAKE2b-256 72c76018a5505bb1b346e71b135af03ae776f680686818c6f415b68a3fa865f2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5039d380b7d5d696cff33c15c2e7115e9dffca11766fbe77b61cbeae665636b0
MD5 20fac64ed0e269a8e6ba92ef220d916b
BLAKE2b-256 8955a57978a8026be3084c5663975ec0ccee86bc975233ba9693f8e82f1c3555

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a7bdba0638f7f104e1e0d9d000b9751838e89f3af834ad2ae5dae93c6a741eef
MD5 88f9cc954a9351e2bfe55ddc5c91f93b
BLAKE2b-256 e02ead662459995779bde8675873aef5f3ebccd93fe305e424ebb5361f7df2a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91f1e3878719124c005beb30d4f7cc772c5a435f4a4e7cf5e89252fc08211f6d
MD5 78adb8bb5656f98b60a9c37ad465d9e6
BLAKE2b-256 258be74e17b8b465f1e1c6008593a0c10ce2b510d66472e63928e54bf0e5869b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 77cf432f101f35700bc9cee3aa42c67f9c6b83d65b11a577696f8887b25229f7
MD5 caf0f1179018ff44e0cd2c8e660774cf
BLAKE2b-256 2c1c107462621cb5be06afe1b044b01a33ab084855ace63889b192d1b802c3d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dd3c0141524f7dfe0fa8fd65f81cceb441f0f176cde6b975e58bec3bc486d212
MD5 2cdeeee70bd24eb7302ddb41455d6d14
BLAKE2b-256 3f7be32df64fba666f3b5b3714ff9830a7b5a612aa9168c6e768594bea1f7754

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4aebea1e59b5125102270cf93692b6407908de03b00a7272a9082035da1f70e
MD5 a6b8dab8dd81e2bda5b35a8fb786eaf6
BLAKE2b-256 313f4e50f9e3b034afc6c45335b5664e040f9e9ce241701c93c6c7d3a4ca36a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce8bb25f767d09100abc865c178d51d9dabe3a5a633d846f73a8373d31f106e7
MD5 77d47e1abd74a87db358722ea25f582b
BLAKE2b-256 2758d98a9c0fb0fddcc9a4c39fe1acfd3fdaef21b6a91c5400f9a9a58e5c49e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8de547006c32a01893526d8d47e84975943a9ca12c5ed04a8a3072e4077bd74c
MD5 cfb29b7fc39421d09385167202d006fc
BLAKE2b-256 259c1d80d0abfee54de6851f789983af6f9adf9d40dc9804f5b40a3d73e2d0ba

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308061690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac794b2e8dadc5228384c589193456d676df0cd4fc3e5b3578ff29c73735892f
MD5 40564812bddaf58adfed6fe8cbc0e793
BLAKE2b-256 04fb042eec967f267277c2bd9c85d35a8a81e555713dc587be0ff62abbd5448b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page