Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8861eaecf8448dc5bdd6a8f4ebe28f5d47e29a7cdac3c685ef875b4eeb6d0d37
MD5 f1cb423dac9de2315c6eed3ab33d2853
BLAKE2b-256 7acc57644ccca45737d22c60c62e5560fd15d45d99ef73ab84c593035e2750a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aadcd683952b23866ce089d6e39e824dddbd2aa331f761f03997cea7779b6fa1
MD5 8dd926413e8a2667f38ac771217f1dd0
BLAKE2b-256 c52cf95d9c88c33347bc57f0a6ccb40a56a925ee805b9b18682567cc10e712bb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ad6c6090ec5dba5742ef4d7ca6dd9e736e159e8dc8dd3ae16f05a5108bcddcc
MD5 c292d23ebac281feec9f0d3de5576682
BLAKE2b-256 36cb34d0e0c1d4e7cf1f49467bf18dcb6c86e9bd378c5ca3a44ef049ae81830f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 85cec179f844c79075f485722a1b20ac226e46cc73375f8bfac73e3eb3aa9e35
MD5 4f8f0d5c56295d8b6f1bbe77a2e58244
BLAKE2b-256 3d4a4569b53858c231d98db57794927b9c2d04eaf349fd5fecb524da07b42b14

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 347737579508c7948ec598497abb448f77353c61b9a067d88f7e2bd8e0f79592
MD5 f76da542ffa5556df089ccc944d67a80
BLAKE2b-256 29636503ec1cea7cacf2861d9275d819c6a1b0f3ad81f3b3517bb967ded46b81

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4c0599b0a35a06e6b3f0c6a485ab8b90c55fdc0a9aeb70994583f4fec94824ad
MD5 b03a1775311d4c9e6f279826e2cec10c
BLAKE2b-256 19e7c2c4c99c91492222e2ec7522a01e6a20f4fa732d626461f796d0b68c866f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 256a689713452ea0f061c2c450799b7f7d1a0347620e15d2ba2120502fd3c8a3
MD5 b314951cd68495e1781c782ae9493722
BLAKE2b-256 c7fe9433380171dc6ecec0a3d9e81ab845a64784f37941e7ae220e750e7780a5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5bc72a5aeb083277baef96d8e4a901655261571767f5c642e1bcd327cd91dcf
MD5 621ff37fe26039d0c81f0f84307cc4ff
BLAKE2b-256 3eadbbba1d093976af125e68eb043ebacc5caf660974ee5b756740f7477b8a9d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64a1cf880131318986ebcf8729d4cb6e5e25844eb6e1dab1e682bb142c603cfc
MD5 91fc3d0d3273d78b9cce611579ed4fe8
BLAKE2b-256 c204efbacffb4c6bcb7a0f362b18455f3bdd39e66a282b5bf237299d8daf20ee

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d0f4869468f0ce21d6da6d1715feb5544a93142dc19fefd489f9ee3ec985799e
MD5 1ef5c8be21db2318ca08e39f9bafce5f
BLAKE2b-256 5055aafee2d7fbed1940edb440dc3b2bc5e33d46194c18ebaada9270bd5ae625

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2d3e27e9325f6969e897e3c61b5753190378fda6926d941efa75e70acbe69b0a
MD5 849f1e99cac844e8064ce2e7a8e99b77
BLAKE2b-256 b223d958967e607e25bea3843d0e20912865a06c39237db974a6479e8898b9ad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c0af3c52a63a561964bf0637ad652ec6199e77222289de59f2a52d2d5a959941
MD5 4c50bda833fa9120f8809f49daa683b4
BLAKE2b-256 ceff3350b387719dc952b3d636bfb2581bf3b27762ffb2c2a7242dbce134f616

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 83f36465c3c7988c5ed87716d48c3cf3657d0e31df1c4d457036b685a9ee4472
MD5 e28ca2e086eb538067d48cc3d55b18f9
BLAKE2b-256 9297c751a955d17eff5e67111414c29cbf1537756046deb3864fbb64997b0729

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1b65a31e6d08d3fd011599fec2fdfd4ed5ec08174074faadc5ef3a9c376cd301
MD5 fa5d732ee9d90668894433af6cdce4b2
BLAKE2b-256 e7a783e3527a19161fe115cd9ad6f7d5e554174b7c4614017359f3b3fae18edf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9be5822a9f0e93e86ffbe0a673330c5501ea763f70a909dabd3e93194a696fe6
MD5 f4888079e33f84a599e79d6d96660f7f
BLAKE2b-256 73d859e9d58e0cf32aa35c27de0ad93a53f4b693fefc5fac6b585ceb4f127b77

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e004e9ab5f3044eb3983c159e4aa91da62703bb2c258b0f44be4d2775eb688bd
MD5 c4ebfee30ce3e35e49c54b620df0c341
BLAKE2b-256 6bd88df936225ee04e0ae5b5b0107a1d77b0f01aca020080c2384be917635f91

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6a268fa84725f76d1c6a1c616f9884e65528c2a37e45ad4c3bffb5afa19e859
MD5 369d0c23056be8b14df1a100c2122034
BLAKE2b-256 dd0dd3d64eea0daff733ccbd78a69e961b3e6b2c2bdad032b1fc08c9260eb21b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 457791474a8ec2c7a2e6229a33511d623c0058c5658a062454b92b07c7e7adb4
MD5 56ec48eb6022a0e03c8190604d2cf493
BLAKE2b-256 961171f2e880acdd648f0950033d5429ed519339a3ed59b383c9015b9591e3c7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9d589b633f9482578bf5a923368c2a0e3484275f1ea560b61980d9dded0f3877
MD5 14e64e440917a2676b64a2d278eeb6ed
BLAKE2b-256 59207738af2583d4536c8ef279e7448c0fb7d526d487ba9a92236ca4c3aae73c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308091690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12a78e5adf035de42899387c0b47d48dcf381e686e85f6321e9a908e46c50084
MD5 f22546e4fe1264a64957f1516ba5426e
BLAKE2b-256 f84c3bfd0b7cda9cbe25ae9c1edbbe64f1753a666ffe99d23666251aac1f6c04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page