Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1144e72bcde27716e55960207761a86cff1e4c32df17da926858201963632f94
MD5 1e5678d41d6a4c2e7ccdc45f66663c67
BLAKE2b-256 81e96215f080579970002a0e33650dd18dd1287d2c9d9c107699b753b5c995d6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 507de3916c841cfaa8a9535237d23ad365d798b2a47db625e1c9c27eeaae50d9
MD5 85f4cc7c5eabd20a4ce08625108d92da
BLAKE2b-256 e04bdba0df2b85e3580066807962bb97905a1138e1191eee04a57fdafc13df1a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c4104dbb12221a0e6ce5e20d8b2bd02aac14328e86af8def07d4a8a74c228976
MD5 3034813d7c43b2081e3e72c50a1a3e01
BLAKE2b-256 b0badc5dbfe742fecab7cccace939f7ffa9c2589fea5b68a2e4c896b19a5670b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02b9483177414a6de3eb7c6dae6bff698a3459f733c190a64bffe601e6de796b
MD5 74237e7b17a540724def0163804c30de
BLAKE2b-256 7308b1ec9cff2ecd5bafe448845579a8c8fa8ff9314067f39d18d8e42a2a1a2f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e61167d6a39cd59c253b3174411fbb78abf5f65fda0985bae9de1cf0e845f8d3
MD5 9c8d63afa0162f834770ea8ed90c3c0d
BLAKE2b-256 8b56715e9bbbbc9bf88979416c94a51ee239839dd3fd82d4a41bbff50a5acb5b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 04f63353ebcfb482a570d0c7fbe7925ad98494c7caebdd31f1eb098c12a18a83
MD5 f78fbe3496bff006d35902653fdf3e30
BLAKE2b-256 ac584bed0e9c2f903a9a6cb0c0acd739c523b162506d50ab368fd40025c628b2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b44a5ec49e0a8a8a8acaeaa586da1cff91cc76d59ca17f824c72b74ee298e48
MD5 d53ea32df6fdedd7eae999f320922eb5
BLAKE2b-256 97ec6f5fc91ff8385f600c8ca2d469c1c8308ed58cc42ec9dc8a766507d2c0f2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 56d062c9828d885f949ac0f8b444c341eeb820977e6ee9d739114ca7a3f42e16
MD5 e6345a8497cadbc3ade9666ff84d32e5
BLAKE2b-256 1deea1db1254dac8cfb99f6b6c989edb668511c43ac7e67c87c2b7e1e5614b95

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e2116e6e95b2734f5afb950174c59704910a5c3e79006166957a4a7e12626178
MD5 9661dd377786c35b95b14e8559532455
BLAKE2b-256 cbc0ff101234c139fec0e61b4138e515ab669edce6bac423a60367a69ef06ddb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9c4c0c80d2e431383a4ef7d472efd896daa6c72fade5e9282acf9f805625475
MD5 1125f2a262492eae107efdde4bba01c7
BLAKE2b-256 cd4b97e0e3ce2281fe45552462eb25d05a8d22f24b727f865ef65b0fd32750a1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b7b2207a56760c7be6285c15ebba5ceab46884485f860adeb38fb58b073ec243
MD5 9a754645b9d03f8c62a19c6555129d06
BLAKE2b-256 b6dc3b9e6c52ee813203ccefb72182c4dbe10d9d67e615049a00d084c00a41c6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5fc1e8fb9071449bc290cd51205458d5e7c12c1bffbd6f79376ad1afe8175dd
MD5 9291f6d853c35c2e8b0f50f8e319b513
BLAKE2b-256 9d73a94b984220fe5fe92508ca6e0aedadd4d94bd3df0af3b1e8063cc23f32b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 646ab2ce94c897065309b360ec16001e715e2a22cd3615d328bef8a64d7e51d8
MD5 3196a07b15af9d28e4f922699d3c8d48
BLAKE2b-256 6da9789f2bc22073492b118e6528e2b36949d32a2e81f9c6096ff97cc0a04fc6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c7ddc1d54b3326d42b59b6dd270fb3d18d2273cef9bb6fd6a66acd3793f8e4b9
MD5 6b13e1f8d498cd854d5ca03c43addfcb
BLAKE2b-256 237e332d5dd64982fc18be8a0e68c5fd5047f82c2acefb0cd4fa15143bedcfd7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93013978c02359b0c42a4783b59bfb2939fd60b983627eb167882179ae69dacd
MD5 5e6964cb609923f9376dc526cfd38807
BLAKE2b-256 c5a1409237e98b27bd5450522bade24e552f791f18200aa28eeed036bb7e07d7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8f0cb7721a4c830b97099a47ad316a20f52501ff76d7ebc1512a86cc96044a70
MD5 18b54ac3d9449e08e6891c0d287ca30a
BLAKE2b-256 ec718e8218476c7280c1c460f6e5f650c57107f978ead3157ebe2018d6814eeb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a7da43c1fa3c35674d1fd525f54d1248908ecd7aa1ddf5f7eb2738b48a84d44
MD5 7e8af19a9c39ffe0b57afd25ba28f659
BLAKE2b-256 fbc67df1a72d6d267cf4dd66b59e6dcfa29fee1a865110e52953ae6491c404ab

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 95fdc8ddb75e9ddd5af3089c1162ac313a9a741541aef88548a57f3674550d0f
MD5 82d102a3afb7df886978c3d29fcb2f0e
BLAKE2b-256 4917674940964569505cc5f12a9dd4a1cd198923c1c70ce4134c786d0d8482a4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eafa879fb419c360290da4a12ec797dfa4a8553e8b865dc61d11c271c6827899
MD5 6293e049025f793dec99b240d4cf1088
BLAKE2b-256 71a71b35435a3295f03f974621ce3c17645df098b7cc7a938be524c6230f0743

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308121690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea2d5b365ea1ed5cd3cb084bb221be5c37dfd1f83fce7e8e0e2c737b8fa2eac1
MD5 4ab7dc1e5a73661dd1e281b184fbba16
BLAKE2b-256 6bbfc83aabea3ed72951790cf9db5efd4429ead4c816004a4767839ea61ab1f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page