Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0c5259a38f10ca75c116d6fbb2b2a2aa98a20377f19e239a32e49a0eebbc469a
MD5 e76a8b2472f746d836c49ba384eae795
BLAKE2b-256 a381a8a487ff62c793fa2fc77ea2d218fef9df0190c0ab9bff1ad4356ff39497

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 756edd4da12d3608a958fceb66092b74fdf5b5e94a1402088766c7c890233091
MD5 ff892f2e4d8b2b9574468723ede7ff69
BLAKE2b-256 02d5fe2f1e4a427ab85f5905d675f5f25d27f787a4b85fe5f92c98f15e61fb4e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87a0f3e8e818f9cb6fd3797fc968712ce38e2e4777449e7acfd4cfa40babd593
MD5 87b8f1dd1ef83eb23f755b69ffc0d5fd
BLAKE2b-256 b11f1aa6b583af1f035c2a819f402821b44c425cc35a91d715c7524320ebe6de

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d6377d59891bf250c6a3efbfcb6bcd974a2c3f0f5028ca77b2643711acee429
MD5 017b607c8cc0fe4d2b76a18d1feee7bb
BLAKE2b-256 24a22cbb6dfe2dd10c4222ff62518787446342aaef431addbad7e585bac8c5a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 459f72cd6279250fe8879e93c50fad72becbd654ac4e20d53b0f9eceaabcf4f2
MD5 335a27069eb0733bebc6cc3f66b95731
BLAKE2b-256 0cb05f83a153521a048a27a3ba18b923780666e791b0082477cb9126013b1af8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 40ccd76d0b7c6e9121db570c0da51c05f6303e216e7cb330ea0e0eddb7c708c5
MD5 be061b4dd399414701b56b1b1e7492a2
BLAKE2b-256 b261ed6e9e51c37bc0a2dd8ae7e3b4f7c7ed4bfd0c8c451a5b82d5ac40102dfd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 474f719445b15a89ce3d6ff7c4108508dc2dc12b02fd0440e36635e3e3278a17
MD5 a490b29fa85a361a7ab6ec10660f707c
BLAKE2b-256 4552535e53914257462625a46869da35733ab08e43605e17a44d9189e657eef4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b85bde86e4530b86b384929b7b4b89eee512323f72be13073681e8671392f85
MD5 5ba7a97f9f02702619c45870fc204c58
BLAKE2b-256 d22f08da875d66904e9d16a328ec0f2399f668de5cac5adc42d34d5166fc037b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09abedd235f634580a27c67fa418650061fb68ce78a018f151010372f6a647b5
MD5 58e83e5e09d7986d314807d0e1531fde
BLAKE2b-256 25a57a7b09523be98baca6a62b8ede16e4812fa6b48caa8dc6955420b5dc12f6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b9d666cc30d03d0be06d97b235fb08e10bbdd823a5438d8511c1663fc52b73b9
MD5 97943c90a5d113837a29e2463bf9f84a
BLAKE2b-256 4c8c7ab3ceb6ec838a877e695583ae9b4889a1e86850d537328ad8b3f5fd7d85

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a20a8f1f09359e7e530afc30db1e66061539cc9d38ff75731e6d184dfd40a73
MD5 9fd52e90980dc560460f7d610a37d67a
BLAKE2b-256 ea7e4e70f932e9ab8129a0487a54799a214e080d172f1d9c98dc769eacd4d26a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9942df06a4104e6029206809d86144b4a1bc4932b5cdd29ecda827e6f4eb4862
MD5 16e225f2fc3a8a423ee7c77e2e3ee405
BLAKE2b-256 b26070681a94d4fbdd99b1e54e23a196f5fd5c3dc274abeb92b2da74a1a1f30b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 873aa199a5bb5339da8bf69b43fa9848b69c40f613d039f4d1f3bf05773de3f4
MD5 f6efa151d4b5a9a1f6230444237fb940
BLAKE2b-256 74cf709ed7d430f38a9fa81ce4b3ddd02c0dd4c680e21ae4a771b141011158a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308131690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4ef7c4433a8352f83d1e77bb1c38f730d11365d03f9bfa7b2e198a365f0e0a0
MD5 8b272fedf8e0b988bad0ecd595710f34
BLAKE2b-256 f15b4a910cbbaf9d73f8f8a943610d38f4ab88b1232c34cf4043b9a16257ae4a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page