Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8a6a26b35f653a385df40f5af909e9452046f31c5d4ef1e28697a7468f7c4cc1
MD5 3c32eb7235e05f19064f07406d809c55
BLAKE2b-256 2362adb0b01d35c1776240d0ed99eea0a60bee9120b6487ea0ca5ca67e6d5ba9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5cb3541df735b6b9bd5d5bfee464b135686af75de4d548a0286009735be5a40
MD5 7329eb14bbb88a9aee4ef04687911ff1
BLAKE2b-256 9806057d8249c9f3e91ef15a76dee43b7ebbf5c900553b0fd3cdb76092cf2519

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a47c819051c7a884dac6cbb08a857b63f95198d389e162b05be9c3e55693737
MD5 1d46399ac0bd9e9afd94b8afadd9fdd6
BLAKE2b-256 7f03c47d8f65f5dc1bc7ff26712dbd3acc55e79f7dfdff3131b49a844aa82901

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab2c0eac5f1c90332ffb36d4c77a5d310065c5dbacc9b5637ddf03bda7ec5b55
MD5 3729bfcdc07f0333d8346577bffb1083
BLAKE2b-256 f6a54bfa43e7e59d0b0d15d1a4106b6879d6abe7885bc88cc85fbc77d8337d78

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5bc8ad7173e35239f7212a2fda65aa7dbd93c0bd48bf1f511638abd0a8cbb0c
MD5 bd3d52246a7ed196040973ebfcd91bca
BLAKE2b-256 fc9813a4e2db9ad6344c26915b1df205bfaaf87357105da1b7f6f686a9690755

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 11222da7e4c830f16c0bfd71acb3f05193c029eb42ca99af0f92f238d2d02fbc
MD5 2a9be5998ccfb4df9b8ed71fc9e9cf60
BLAKE2b-256 feb42a524b6c4bd4b4e3a5f704d62967b393328f0fb999e77088b7596a193b64

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce1e142febb35dd75e1e37ef47efb59b4bf5c26f3b18c110e35ab3fe2d5cb1b0
MD5 986660b0cdb6d7cfa3d807d3deca07f1
BLAKE2b-256 f4e087e3150e68f17b9daed546ff5e13cd2727702353504127e49098c56cce2f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd2fadc335a6ce50c812fc6c05950608fef8811bae0c5e80b5d2c68a79735610
MD5 de8874be4547ffc99dd7f781b7244193
BLAKE2b-256 d5ace5a3f8ff47e7e0532524808944874f68591dac66184f4d74f904563024cb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b0dd14775cb2016eff605dd6eb0c5650a55c91ef2f913b98077e8029df524761
MD5 183d03a3fa7568e58b895597ce892c69
BLAKE2b-256 cb0d9e4f2ebfbe0fa78944c17d5406c32abdf3c6b00042492025c0df942492ea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ccb615fd92413d5d97c4846dd9f652ca3e86fe900bbb4390b7b46e1134783145
MD5 38e534e975a9e7ecce047f268f91fb3f
BLAKE2b-256 a5e436dd5a2c418fb2f5fcebd3cbc074df90ce16146f987f147017e15b0b652f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9b7e13c242e88962cbcc9756f7975911158631beb84d8726bc1d8774f0d9d207
MD5 ab36efa930de9e3920f0e49995894170
BLAKE2b-256 c8e176706050b8cb88d61e0f4f3c9b9f5409cf0dd776aa843b5a478c49dd6197

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 341de819ed6fc94a1bbd1ad90a9ebb644c9fcd291784f0848b0a6ecf060f6039
MD5 7528d8da514abebf8ac013bf048291c0
BLAKE2b-256 d0f41993b1b68aba392a4fd50bfbdcb8e36aacaadbbdebe553224897c5230aed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 948c938cf3cecfbc0ee508362a4c4ba89410f32101d68a7298f8b95eb2a1d623
MD5 d11a3d8a41ebdffcb78b5df37d5e6246
BLAKE2b-256 5b36c0679db1263f7abeeed09068d7e19bb1ca77119140cfbc50668ce136d916

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09a5a464222850a08b89a22a3bbca1826e1d024e53176ea2a8836bb8452b139b
MD5 31a9161e12250fa78632064c08299bea
BLAKE2b-256 e9e2276746265e3df43c57bdce335cd38d381fe2429122349e4f6500477bdb07

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70ae83752a66e6a4c64bad6cbecfe0bb28a186b7b7b1ecaaf40d86d84031b587
MD5 d8cce5b61c31475baf6fab8f134d52f9
BLAKE2b-256 f8fcc925277afe98ed7b592e66ea117b9e6d2a5abae6acda1a2c5cef120c0630

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8e9c10345cf3aea0265df281fcabc5b65ea57d372ac40a605a1bfc169f03c45b
MD5 1f016fe45251d9dbb45d9f198dfe5c96
BLAKE2b-256 ceb803aa59fd18cda3584284b96fb7b39f36a509bc3e9028f168d2d8c9bbbca1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a930621b481f438ce9fd11611c04c1c4c169e24c74d46081d9ea98d840f8a7b4
MD5 95bf2f8cb00950969c1ab868c8a3899d
BLAKE2b-256 c5f53b390e07ac6df7bb186fbc1d08fd11aab561ae63054d81a2f5e77af843fc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a469b8391d3b71b89c8ebe071d4313940982a6916f0665df4f265a2fe1094d5e
MD5 839151c9a93237180c8fb609d29cd6c0
BLAKE2b-256 7c606e3d945001509eefc4bdd6c402e2c57cb95056df20cb5dba001d6eb9d5c9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db2cc7f3ebaa0a31b9541dbb10e4c1207b8147baf56292b2ead8cb43c36548a1
MD5 297ef0dcf74b594f1bb0dea42968010f
BLAKE2b-256 43cb86d985608d6e62f61b25cabc06a7dcd3cf69bbd4375aeb4a7cebbda82852

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308141690302491-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 55f0b127510d0de1832a1101d7ee7936ac9f40452504b81208d443d609be6d28
MD5 fc7171c7d30140ddddb9e8f564217cd8
BLAKE2b-256 963c521671acccd285484932e4cea95f9d243f246386c54c2a750c6f3d7faa74

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page