Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5e9f0af6287be78f4d1e80b5f92e74f7d84d7fb60e5ec24c5f38dfdd5c7a9acc
MD5 ec50c9f86211d17c6c5ebfe58f0d7a48
BLAKE2b-256 b04f315ec0d78363e5766c662abf9d52e89093f36a8a887fdd76f5e15d70c92f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5187ef69b8187406cf5cc09e25dbe28813ea552ac63fef4f4432fc3d196eb341
MD5 a92be4152a85be51689764214a6fdf5b
BLAKE2b-256 d6bc3917b933399f29403258c29ecefcc166c8bf998797b961bcd6ded93f6d6b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79cf098305905f3a0763a645369dc602c01176d02647652005cb4deaf06b8b9f
MD5 36c39c5eef4a6ecad98f078275972565
BLAKE2b-256 a9f847845da7c818fa346f731f85914dc544b6399e96fa8c457b14f8c0e27e21

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e7c1965246db11dc4d077ac5d1c51703d88765227f7bb6801b9f0bb7c1d9fdb
MD5 5175803818dcf8584ca64b3082fdf6ad
BLAKE2b-256 9099192fed98a0236cde3897e69daabc8c48d8a4b85bf7ec78b68d6800350f66

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d5df88c3c84159f556691d0af341b6f83cedeb3f6161873b653f40b2f1b23e61
MD5 eff1b733045d90d31c407e62bfeabcc5
BLAKE2b-256 5649d707148d8e7f71b63f9c1caee95e0dd09c0e015a1a92ae370984b4b258d8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4f66fabb4ebad45f800d1a9d7b4377e2744a60e60c0852a4f5a6257377ef652c
MD5 fec9b4a9f25c81fb915e39e0690b9fac
BLAKE2b-256 07fdec8a807f7800e98acf3ee121d56efb9e1ef4f0d6f6e0834788929633e8fc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe7c3cb50d7220a00e1d566105bad6079d3e519d536e1e8ebc95c09818f0c928
MD5 80700272d926d96bc9a7ee85095ef8bd
BLAKE2b-256 996bd906d32550ab360607425cebdb6186c221cfdc0f079de38287b5b7f2a449

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 face6fe0b5f2c0b774c6195e1461e74d120f2c885e3ee0b29a94d657d12f858a
MD5 9275b1c4261bcba47a80fba247389c70
BLAKE2b-256 2356d554bf47a82d95821c64e3b89d63a0b75d7240a571a553736ee395dd8eea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dba7024490e0f9945e189b36662612eb8e50646a7c160b0446acfcaae18784c7
MD5 8f426f432b89c6b8e184476f655cced6
BLAKE2b-256 5ac809f5ac038c2c6735d6158f79acd5af1734d73ece4fcf941f1bdad19ed3e2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a65116cfdb2cb4f9bdc5498ab7e37027a668de4701d948803a199314f676ca1e
MD5 41cec360353ed0a96beb6f672497c382
BLAKE2b-256 66305254554c9e9e3353a1ddbc7a8b3e32d7bdf02fbee777afe94558428d020c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d30e1352c0c0af1ec255ae56bf913819a5ddd516c109e32b922375c8ae7226e3
MD5 5f74836f9fdf88c7b07d11ee4de1258b
BLAKE2b-256 5f0854458c7f04cee985dbe237c8cd38d8fe397a559a6bcd052683e3fd2e833b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df42bb1063812dd816c688e5b2d0bd690fece5b4da49809be8e1a64098f9405b
MD5 4ca132d638a0263120814fe592647c8a
BLAKE2b-256 a8a4e576700fefa6da45756a094ec78656c3616533c3273118198a018782d7f9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb2ad2efcf1ca6b8417d33b748197650366bdce881b29967ea89648b107735a3
MD5 091e65afc2b3d3d4b7f2b9a395b5a0ac
BLAKE2b-256 f0ab4bdba2e1b72bc36f489957b596fbb202e77a51a97e839d76532b0c438152

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9be805289d5df961dbbeb72782a7f0732f9e47d2c2b0c3a920cef3894ed1a961
MD5 7c157a32a389283cdcd5f5fcde1a2d88
BLAKE2b-256 e00be3715816e0dab3d32c531e1657177753cafa3fd1dc32a052444ce7d65797

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a347503f2729e1ed48804bc96d326896a86331cdf59a5ab8ade231b8f7300e0d
MD5 09ccf47eeca1c47238da876726c69e1c
BLAKE2b-256 f6fb06d31bf06f2deb87633d88a42776f5f14516191f1392713c9a8b73af4432

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9f2e66641c85b1f245570ea97c6245bdf199c942cdb48b4040967633bb848a62
MD5 693366104cad5951063ac82b3704631d
BLAKE2b-256 3a4737db9796aa3720c125a698dcbf91549240d207b985b9962fdfe27e5248ea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0bb909d2913300597bbef5369af473fe0f69451912a36088b1f83c99fa0bd82e
MD5 7d4807f1622f00b8b0fb8c4978f5b28f
BLAKE2b-256 fc7f473f320cd2cd40b53a2f8e8e023062f01ac4c5c29c560b394e19fe586627

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ac04268c166810ea29772f3102b3622122fc667bc09e1d53b0f7d590711e3751
MD5 327e806436c3ff049d612dcb11312dc5
BLAKE2b-256 695b94ffbbff6ab404726d46f9ceb63c787e41c491eb7d886e5df67ca001515a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 90f63a408df9d7015f299d0c2a9cd65b903c1aa3d44a62aaa221635126a51acf
MD5 3288c633415f521c2ca05365c4a59140
BLAKE2b-256 6d42a4374b9ad472dc813f7d04d300f8ab6165d48683458115fe850601975dc0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308181690363416-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e12e467d27c8908e95f6708f525842297519c112de2d46de88591db20febdc90
MD5 5c7642b4fd07cbf69563430e605df285
BLAKE2b-256 0a82a954d88715fa02915b7f74bd6f6b0e6122411c1b2fee0d928928224d5bfc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page