Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4f2562c7e83964e1e526edcb0b898e482997efec62c84529681d065f1f6959b0
MD5 c7fb77bbae3ef4b6e450ac42cb428cbc
BLAKE2b-256 4af9ff1ed95b5b96abbec68bac217df6be4a60888d2fa664ad223489cdf41dda

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b849ee3be6d09be5eb6e94201ce104b9fee6336b5a570007452c8b9b8c82424
MD5 ac8b0fa1688f612c6e357950511776c8
BLAKE2b-256 4b33ea2dc22492be7fdd5ed401096ffa5da1cdd440bd6ec7e53fe91e99c37608

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0dd1d1f662531f34e3b6c2f1b13fc1f47fcc41cefbf5563b765973473da81eb
MD5 93b41bee9e82d328f153a33de6f5f183
BLAKE2b-256 bc38617484a2a49b0c15ab30404bfe066d9d1b93e0875da534f983c9df75d4a3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01de49c7d4d00203fabb87a724fca8c242a7d209bd91023bf435401d3976f16f
MD5 f3f90831a4f0d3cb1129c9dd5721f97f
BLAKE2b-256 5cfced77bd8992d32f5e29bb53fc956d4dd499c7257b9853436e3dd52db2b6a7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad44a946add38d8909f629062c41e63ad629fd6ff51839e42a4742c2d0b8ec3f
MD5 5b08e21f3b349978ff2471ee734ec274
BLAKE2b-256 29925f48d06fd2a2f02296bc2104030e2d30bc71cb2bad103164d725cf724f91

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 62d0829bab6629dc8ae3a327b84ac3f3094a4b2316f10297ead011f46897ae0d
MD5 6fd6a2573cf24aa2c3baac8c7d32e8f0
BLAKE2b-256 928e8ba921ba47e4caaf619ba17bb136188639915c350dc1c5e4d9f2c3374bd0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7a333c6f8b6acbef9129913d99ce66ddf75f504751559efb149924174ab794e
MD5 52718b76e9b67ab1384b78196337bd1d
BLAKE2b-256 02c957c5bd389b9c49dbc6ede7aefd1ae30efd79bc0084dd7d2656e2d976ebfe

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78275fc7037b6127864bb337a3399b3c7b2713d9590296146764e9bbc3b87b98
MD5 28c12e300967a334a89de935275122d4
BLAKE2b-256 4522cd78489828c646dddd4ad2f6b3c7d55fb2c2f2446b5d399a4441b7950dac

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e8418ec0093b896dfe04fb54b31dbd61c0729f13936f6a2573a874caa7e88510
MD5 7a30c63dbcb5fd21028c5991d2fc36fd
BLAKE2b-256 42c5ad9f5bb77d9e9e578ce5004c8eeb895b38bf865a2e4c50bcd44aeccdd642

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 abf25235a8135568a98ff7d4ac2caade0659e4fd8ed007f379ba148fcabdf2d5
MD5 d338ef05f8b4b1723ec0393d4baaa999
BLAKE2b-256 9c05dbf437286d5d3cb1bed0c6673c8626e606bb01019e69a2dbe7c279c4b806

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f995ddbc6fcbdd254f5188e5ed8fc306ff2e9e8f4aae8baa24562ee26719032e
MD5 2306237226ece4c9f4afa86ff1437739
BLAKE2b-256 0c72f40eaa89c8b308d73d8efc899cfe009cbf673e8338da011e324febf90bfd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09f91b4ad0ec9b7d730c54233f717befcce090e0ef2c067a8c2ddf7b9eab5b09
MD5 2874696a71411c2407a09b220a4610f6
BLAKE2b-256 596cc43c6f7929a65e8ec6f8583e15204d46cbe7c059d3dc98d20a21f1b85c1a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7216fe6b4b1bb82204bff73e0692f2e8324e13b4e841ff4b038b0d72f8b3c74a
MD5 3aa2ba793f8481102e1ebcac129849ac
BLAKE2b-256 95bdbb790dda7662a962102aa508b542a182c47ff50bdfac92f4004d8f138633

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5fbd8ab14664277af8c3e335e22963d9223e2f50c1effcc828685682308fdc2e
MD5 f238453ff65a056aa17ac5b2922c8657
BLAKE2b-256 60d5106aea63554d1c4e4a1c4ca2c6a0c16fe36b5bd3c13ea52965a79556593c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ec351c83edbd989d5eae5e264dc151e37791754b11bedddf714447cd11c6a3c
MD5 834a128d4c14111820420ffa1b006637
BLAKE2b-256 0be61374325750bf23f3948e2ab1927ece2e16b2725b52e13723373345ff6a6a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1fbd782e4df43eb796681cef9fe48c626beaa956ff933627bb85818277316c3f
MD5 a17c96941b906693573b8c399423448e
BLAKE2b-256 365a68616559c7d38f23a59711679b4380027700ab3973caa46c91ed00dd3ac5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32335d3218fd2f0d138be5cbb704a72ed7f572932aba1304b1a8587f62c202bd
MD5 89d7524111a55736544fed16f24a96ba
BLAKE2b-256 bc78fccc6745552a78dfeec2b68df9c5b6b92f5477b7db8f52301314a5031636

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 240a4964c87fa0892c66019637ff530377558f0d7f3e57451882895351b6917a
MD5 4bc58c8a5c04f2614966b7405eabb70a
BLAKE2b-256 77dc070dddda09e4401253cb263636065b434c9497a78442fb9fcf1b690d312f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23c6a66bc2b9eada69e294dab762fa42bd5c7dbafbfdcfed3abed6aa6db7524a
MD5 2fbccb3bbd7e99667abb944f7ca4384e
BLAKE2b-256 ee88c24f26b43823cb17d95a544c4500c0b55db4aa9dff19ba351c7b02c99c2c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308191690363416-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b83d8f3bee098db438e921b5bcb5fcb974cf8b13849db600d66f7fba98646faf
MD5 dfafee122ea3a36f3607a8d607f40739
BLAKE2b-256 acd96c4baebfdc6d3fd95d70f90c38146306ee4072ddf128637b48b90e944f89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page