Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b5fbacdd25e04ef00a32f7c617b8674046d67a0da5d2baf3317d1ec92d47cad3
MD5 03fd28888878ef40bf627e61eefe27af
BLAKE2b-256 f97fe4de898b555226bcc47f2f2912891b8b465f9fcaf23994646fb98bcdd756

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c705b3f5fdc9461db4dfa83dda34b135564d3b3903f3133025622656cfe86740
MD5 c5eaaa07d6ef9899643c8921843c7e4e
BLAKE2b-256 54589864de83d2b36676d5120a021b68c137ed7144cd2c0fe57b429dfa93a225

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 041519e571c627ed387bcc2ddafa30b316d2dc2c1ce948bb1db92770a68a1c18
MD5 3b73262ae96aedc68b4ca292f54853d3
BLAKE2b-256 7e4ac6299019b5478ec44e12fe4a89448a6ffbf6283cc6c90006ba04d65ac185

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b63be425bd05c42461ec268555f2c04cb1fe120777f53ee0f9fa3e458573d57e
MD5 511901f4e29247c988f00497c8b1eac9
BLAKE2b-256 2655ac6093f2bedf30b9a16677bad8e4729300cd01f507841950a9816d252093

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ea139c53e66741105e10acb85562daf30704b49eda28385a9035585c8a20ece
MD5 b59f103e1f3a91f69187fefb3d161d91
BLAKE2b-256 348dad5e95a8ce0110a4be52ca56162fb79cbb630f62d948cd129f577dae101b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 03038725a8e5f4eca9f869918d25165076df14c3eeaf9bc7acc9dece47b00525
MD5 75b53a35af1c87da4b24c534f6b13c58
BLAKE2b-256 6045359e996b570ad4a9bfe00b7c93d59027c19a7421cf4136beb41b8536e3ae

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2cfe38742af1ea65a088214b2c10b37182e5fdb6dcad2368c12570b603eba159
MD5 eba3801f1fbaf7a33bd1d0b37303805a
BLAKE2b-256 fb21a46c2d8cb269b75671e983c107c8fce0b0f8d7fe3644df18ebe1a95ec6d8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d15b0c3a4bcbf269dc62ce4f748d380f4c2e9c713d0163892518fceafc064049
MD5 966932d676f638be49f37abf544b7d56
BLAKE2b-256 a30c68164c4f52b700519aef4f4d585a3b3596e2cfe4ae5ab1bfebed6384836b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6122ed4334e432c09205b789c52b08fe4ec653d792b9e965d848aa0d49f230c1
MD5 3c594726be16822fa83b881bd536caf7
BLAKE2b-256 279f668329e93c95e731139b983b61d19cfefd894d57a28fe134d751d9249cd9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 44eaf87148599ca8155dcacf0818acf15556694dd58e86221a2923702f490e25
MD5 aa8ff3659690aa109e50f1be9f8b23f0
BLAKE2b-256 dd3c51c53170f3360c2385ba7e1ddced71a21c827b2a3d5387efc67ef22bdd01

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2050f4fbd10c4cfee7e5091526e69cb01747e72c3434bad7d4ddb697266a0721
MD5 2d70ab7d4964214685c77cdef2a56f08
BLAKE2b-256 aa01e6235fd1a399b7e51dbdc4663e9bd99c73bbbba590afbef09efa97364aa1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6f26e18f9c1b0d5a2f19cdc5aabefca01ef4321cba29b417a788a882117ed105
MD5 03b39ea86f8552d2ad9300b534586a86
BLAKE2b-256 ef7357d8064ec52e5346a89b10c5b78e25bb17ed0fec0173f1532789d7fd4ec6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e5d054a1aa6b8be337dd729017a5cab8e46e8b89e600a6afbdae999d4da747bb
MD5 68e7971a92b12107a26c9e26801d9430
BLAKE2b-256 6d90f0936251e3b42d9114ed78dff4d381893454f6da43de83c89c5dcf969ba0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba2a8bf36d2c6e5e12a10a5e4f50782a6dba4dac6aae3732c095a75f490a3f4d
MD5 6f9e153a566347ad7ce55912bc85ef30
BLAKE2b-256 64fc239bcca5c0866e8c9ea34fb245c409092f6d9a63a7efb36124c9ad29972c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 accabd90073924f80723e6da04a9d25ae0adf9766554a894ab28fea0e8e9360d
MD5 957c74d8d535d9594e2fc7d72c9a7bc5
BLAKE2b-256 3b78e10e50e3e415701bcf3edfe8284b27c7d95f0ec1c28c1c8cfc0b6ded9327

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 76685c2cc2b575fecfccbaacf989d8007881214a568ffb328da25f53b555663d
MD5 c026b0d6ee23ef7ebcdfdf4d9ae84f99
BLAKE2b-256 01427420fbd10a7f35288f896ac7a54e3581ba0fd542670aefcfc983a325da15

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14c22232c7a5e59895984ef60c8140ec039b9f54507d0a2e17d18571dbd9f156
MD5 832d9d15a93193821379ba0b5520a0e0
BLAKE2b-256 4323d76cc56690c606e5a87e124f5be2bfe11635f90e0333c49b8139473600de

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 373f067eb6ee849aa9cb657dd0e78afade6a89858f970fc19b3f2f12fab28c40
MD5 806ea08d2f82af1a4262f87bebc68ed5
BLAKE2b-256 b703d4aa8a3a13988e5f460c64f1b386e2b473dca79551eafdfbd6c46a43d417

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc95ab6fd1cc536a11deb378a3a0753dd45be619a4350b07d44cd8497aef4817
MD5 9bda0b048d8cc5416dcc1fbf9f2d7d97
BLAKE2b-256 66967f1f0f1e23a546b07d1fed5e5f99644ac026cd41cdddd12a871989cb418f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308211692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 430c71ea03aab1bab5529bcd03293ee4871473f640239f31c87d174deb6ef2ac
MD5 02e3d8d5e02d93c8f433dbc1eceeadd1
BLAKE2b-256 cb148a20084ab5defcbb975151229045d7c3cb167471b3eb34a3242018b4298f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page