Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 96eb15b1bb15f2a3678390204726f9d3a93a12e49069e36a0ed6cf06bcdad0ca
MD5 83ac51522f3d59b5f5567cf9b382a7b9
BLAKE2b-256 e78e286a7ab637f9dcc86f15aaf9bdddb35d9b1bcb2b79baeab52f76d656ce8e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ca497eb179571ccb3aa0bbaa0808349967cd8e53356f33c21a5e651d89a66a9
MD5 1843eeca4c5d7fd2215ff290e9259f66
BLAKE2b-256 7d204dd684bfaa4ffe87751f06d8e7a358b8204d31466dbc61f1acfb589e7bd7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f567744499d9bc1c6ffce1c827631960a17fda46c04877265bde1cf2d7b1738e
MD5 3d3ced24a62fd0eb5ab01b80a84b8080
BLAKE2b-256 fa6ff0308916d61720f84b2224ea850fcbff4b20dad8bfe80ea7945a2a21041f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c22e03ecc145f2a5cd2fb63c8305947576f0ded2ff61270c46dc99e3d6bb0ea2
MD5 a20e1d5d0a47ff8e35931bb028eeab34
BLAKE2b-256 8ebc0b1b272f82a5e2f2c1eaa41abcd4fa61ea8fad1f55ba315965e9d10b30a0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db6a0919ed6ff0464ea167fff4f8cd3b9ec54a4ef4765e6266298583d681079a
MD5 b8cd3128dfd7861adb56c70ce38b6745
BLAKE2b-256 eca36ffd8374fb4340cad73237684d492bc8df8abb3953358718a32c3646e17d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7ad6574ef680f5bb44a430c5bafb64529776b64cd58ce082ad3267081d711705
MD5 d81244f1fe0cf63b61cc184cdee64829
BLAKE2b-256 8bc297c7285dc62265d6a8b1cf36031a9dadc245f795262a3f11f0ce802fad10

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f612f7ba5a8317765e051a926a44c1f915e163ba1d61787aeae2b7c180b7d79a
MD5 24136c5115ccb64e1329cfc213a2ef0a
BLAKE2b-256 d07d5be8bf518b708901bb1a408a5f2489b0055f4279407dc9fa0c349d9f7f40

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03fe61a1b33489348837f69034473f74dfd5507a87f5ed4cd145d4e7db741e22
MD5 b7f18cd9abdbc80bff449cba790e7be4
BLAKE2b-256 e7857a7094caff0dbf3dfa04c50fc805242505705f5f1bfc921a91e643a3713e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3bf9748e29d361b87a62c11668479d6e6bba8fa7d79128dc7099ed32248b524f
MD5 41559e5ef3ea9ad177a00bd60d55eca2
BLAKE2b-256 0634c25713f2616eebd9b3a3a5db5865c673ecb125323ea7571699e9fb4625f8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a22d9431e1c6945edb186d767abba348eda66c035dedfe0facd5a8f351dcda9
MD5 7ef2e48dcb7179876f94603c7fe57b33
BLAKE2b-256 9c17fcf2e4dc8e7700331101b2d663b80d2e897cb602834ef5447cb0e48505d6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e599031b133b7757c98b60e25839a49c9fc7d60165c8a14cdfca7f51d09527a
MD5 8590afe7f7da6493a02dec25364b7bea
BLAKE2b-256 bf70dec24a2311532ec8a7187ce5ea5a51e35b1c7bdf7b4c18a6473d743eaf6e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a8cefda4a8e857ff8b2ffc6ba33ec618df2cca7e665adbcf96ab9bdb41d7519
MD5 a36b535c75055cf757d144b89f086460
BLAKE2b-256 ca526ca5c21d08c1f9a4da1102fe7827faaf44a8f6b837e4a31c2463b4051d49

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308231692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bc5f0b9b50894bcb93c9786a84e47f3e55168994a297f23ac5af8d17cb54986c
MD5 2544fc78a8e57e2b2ca2c6162ac5f65f
BLAKE2b-256 8313649917fbe5314d10256b510f93efebc833422eea968f6910904894aad83d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page