Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5e06a3a8fc1ddc4605fa772e3896bfc0a4f639c334f30593c37b388c5eae9203
MD5 c5c259b5725a0e5293f8552f3a16aa1a
BLAKE2b-256 4c67646fb22296ce858ea25d95467d7f0b09ff128c2fa8a4e564e79336a3fb46

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce6d7a43b3cda4efd1cdb8ecdfdf7256dda7d2d19f3638514bdcfcffb79975a4
MD5 f1f21141bd533e94e96f2d478e1ff307
BLAKE2b-256 829ed201024b3e999b6ebc7c04050c47eea7ee0f6af1ccecf236b46b3e2a9ac9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 314a6c9e4fecaf1408dba4acb5a97e40845bdb807ac17f89b96c55bd70ceadb0
MD5 3743d0b916a3769645631a2ef0c72715
BLAKE2b-256 4f6adb16039ee5789b9aaf6fd00258fa9138da716dcf6358fd43e64c73b11896

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65deaed827a004656705cb4ea084146c4e02160b464e98b0594b5ecc39a69864
MD5 508d0329b92ae7b5856f93c49100d78d
BLAKE2b-256 2b95e2400a9bcc282f8b166c1390abdd6c14eb24933a30ea68b9b1ec89282597

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f28aa2c5121c56d43d1dc927bbb09f0a52b7a56cc96632e3760e06b2777209d9
MD5 6abdc211439e04b0feb1fc04296642e7
BLAKE2b-256 8008864e79a6a568a7525ea227e83c536df7091e062cf059ab9e4aa05f1341b9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a1ac3d2cf0b11110aba5ebb52f88c91df09155571354f44293841753bad23bea
MD5 b3f50ae3f42d3502d2cad740d2c2286f
BLAKE2b-256 647120df5bdd54963b3bfa3f86c3baa320372dc59a2d4d083b6cc316f041bec1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5e7ab76f46f35009f4a9e586af9616fd15ce395628194405295a6ca98125b807
MD5 0c1ca6546930ffc83be758cf7332969b
BLAKE2b-256 6d89701c6b779fbee1417d2c7b210f5e954ba1f1d2382735d86a09f3cf6da9bb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d9c8ad65192b367451237edaaaf24ec1269865b4991305f58683df024eefa54
MD5 0338917e341d48e5ecb23ec585e5aeba
BLAKE2b-256 1cb4cfa4ed58a8a42192dc37aa352370bc2b74dc311d10e727b63ee58374bce1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5bb1c87d0ab49917fb65adcfe2757686bbf87e698186d00cbe75cacf584963dd
MD5 34f03465e5d7ab8f7ff1bf3e6f7f8d70
BLAKE2b-256 1cf00b19bd7faa08581a7f1d07caa47fb0fd7456e9287b7ee75044463f65a2ab

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 228860124a579ee0c13e38bfd51ce052c6e0b77817ced6c97fcd4890e26c7aa3
MD5 77bd8f24449dc1eeeca26a91b376c08a
BLAKE2b-256 1a9c5741069bb824db7ac70bd72b1a609e35e25881b8aa6100ad958ec97a4789

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2b8f3e5ecc1a5967d8316c642510282a9b399ce0a281c0bb338b1511c69d31fa
MD5 88bf5aff7c0ebc968ff0a51c952be2a1
BLAKE2b-256 0687adf811590c610c8d0c935adfdd9e45125cfd66163c4f7b6a204eb29ccbb3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb92190061ddc1222eb4c46d964ce73761472bb1991ab70b8d2f7154f8fdb937
MD5 b9aaea0402bfc0d413bd727fe680830f
BLAKE2b-256 47258467e948b9984e894de17eabd8148bad18661549c69da7cf4bf9d4c89f2f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1f0b2356523bde1a16eefac01291102936ded8e37e41908f53bc57a76417c4e
MD5 e676b757d50d16d5494ab15447b7a31a
BLAKE2b-256 bb851c5295e529cb0fffd45ef36c38268a4aec9f65c6dc8413572c8318026d36

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36055c42db6c9c9725adb073240958a0134ead7753474a6303d5f77123621857
MD5 4901f0884e39931c94a0967bd81c7c4b
BLAKE2b-256 e0a6a538e7eccda5e0eb0efe1ab09744006c2de9b8e824374654853d4e7ccb65

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7071055eeec321efabe4462559966a360dcf85d3f89f384f4871f63569375884
MD5 d1590a34bbbaea2f0763ea948370049a
BLAKE2b-256 fabb0b758e434564381f8d5f5a63b2eec6b4a8b94680730a7ef0150e37147cad

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 90b5683c1516d8bf73fe17896b266593e15d748c0442163ddb9a052516a2f688
MD5 d0470160ff47c9485e8254c2a4da1916
BLAKE2b-256 770fee30febccb42b1692ffa56f416601fa9f6c40afcbb4ab490b1603a29036b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4646a6bc4149326d26fac463d58e7db8e03fca544abc081182ce1dedf5fd6e5b
MD5 4004bf7f52e9f0149423dd893ba57321
BLAKE2b-256 4c5b3e55abedca7ae18f1053b8abd5aea66c17de6bd949f4046ab315a0b33d9c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a1494e229660fdc54f93df06712174b8f9546613a62423104cbbaaa725f46798
MD5 b9cd24e71c596f261e32541d5991b63e
BLAKE2b-256 ee1d614b588926d3ec396b76df229221329b36bca10c6b28f590ec6900371851

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 78014622888fa69bc0d9a8448634c60348d4307f858f58c6d98d6796ab11c198
MD5 8c457e64e0a960ec629c9a16b4cef745
BLAKE2b-256 a0d2ce439aeb9e943fea9ec458c75f1865e42e1247a100d0762d74da9fd8f665

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202308241692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8d5aa6a80b4036c02c153cad2be225cdaa8d944f5ade2fec1736dcc14d8e0c25
MD5 1e44b5f85f3bb3954c94f5a96e8d53aa
BLAKE2b-256 f555ea6684c2ad2a251767d7a571114f727b93ab8411da0aeb463319071a3565

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page