Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 73b4795bbadad9cdafd29070cb685b131547c526360721dc544569d65414a939
MD5 0d6b5ccfb3e56c7af9220ea06c7b0017
BLAKE2b-256 30e51060dc5d197916f18d775603b388bd83ca9b39438dc8e8e03e6e2c2a06c9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76cb236171764721135c9cc40180d0c014f7bbcc44988129201e04b592a4bf52
MD5 bf1bf7e325512c4a9130a87a208c786b
BLAKE2b-256 850b20e190a904496d417c2e34688d08a745a64d478eb62da69ded24f6a0dc0a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b516725a953fb9ed7a5f7ae1168a6bdfa7499072c39cd3e2b72e45046a00f6bb
MD5 6984b6ec02062dbb2cf95ff503dd13a6
BLAKE2b-256 3affe121a6b3b90d99b2a5e94d34ecfb0a06cc754e5b5539c214ceba07e668fd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81dd68f93ca2f8eb23944b8434532e46ff21a179bd123814985c8c512641d60d
MD5 8d961b9bc4789feaff036b1ede5be2b0
BLAKE2b-256 aea30d97e13793133ae4f4eb5343e5fc37b6187c5f5e82cd5e17a145d02a31de

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f115437eab95a00f8b9965bb5eb56f13d0a732bdcb2392da120d14c2723de0f3
MD5 491cadcbcfc46d09b4d86c4b38fb18fe
BLAKE2b-256 fb32118b121e3a7d9d79c2f6cf535c871c620e30bc1acac4d39dc637c6d9dc04

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e6c7c2952fc58c8306b00d76849ca95dad5f3ff7db82dbee9480c0519a8550b6
MD5 e98317a853eb5189261052ca1205660c
BLAKE2b-256 d0ebe4cab76f3718ac2c57a06931178fd83754fb2d28e784a59554fd7eebbcf8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3425b3f33f1d385bd6fc8631e24f1579340600eec5e4edeed03e5a6107ce6dae
MD5 5f873eabff1b6a356ed7676421c8a78f
BLAKE2b-256 220c2b1924c493b8a0463f6ed39f206e56d092a5b45602e8d00dbed0b1250cbb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 25d499add4a61eed29422a5d62d06c9d12a1e6ba2a9086a498367e0d54fb5c18
MD5 ca1ba7fa0902e52fc60604b9d4030606
BLAKE2b-256 e7b2cb0f74af34b8539fcb7fc9d85d90cb4d126d8ec8e5d69acf1a4e67e778a5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 99adbaa7a8fc9a72c383f29e7ecbf0ac8242930cfb0c5fd3814ca75be61187f6
MD5 7ef0200a30911da9a58cfbcb402a7dda
BLAKE2b-256 bf50414769c1c30f15f35ffacfe3bc41bd465ca80b1c8a35a55a16d06c3a195e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7073a8ea80afda96538318d85961527390cb9c4d8048480e07cf5e77638b975b
MD5 2dd2e7f2d9c25a0c3adba8fdf7d337d6
BLAKE2b-256 5490f231ad5de11cee7012d4b88860dfe7d573526b3ac1e11ff3018a58931d0d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d324bfc7c1e8812084d4eca4eca19cb166382031b809293878540870b207c928
MD5 bb05c4a3ab7e87d8c26c5beb6a3b0eff
BLAKE2b-256 788e829446940c527d977c4ee71d340727ff826d3140e1c89c5dd870286bf25e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d13b0915ba9e9f1dfae32ba045c3dedcfd2e0491256f355cfe1addab4c405c6d
MD5 2433bc176e7e6182041871d767aa5736
BLAKE2b-256 112b3eb06912cfaa52cd5ebc641c1060ef28987e08b7f5f8168746e8aead3c3b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 82f38dee332d869b14d01abd856772fa126ae17a69ce15190889b5087af77847
MD5 485cae0402a0c6546d327f33ff108281
BLAKE2b-256 fe32cea92762261b656a02150704e8a18b31447de943900c41d0a80c6af2ec15

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 35996b789c0c1e34c94616a9128e805de3f4a34af1ae4204beef8d92c5ac6f95
MD5 dacc55df6759f08acf770a2e6b4c1fce
BLAKE2b-256 39b32e0fef36ef33dd61479a33310f07e6cd60e9162ffe0913985887a8b406b2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7355fe38412292b93945135ae5103212d4ee2221caee865b3be5ca29794bb2dc
MD5 9f6102044a69b29c97cd081ffe78f4ea
BLAKE2b-256 104ba2b368b0a78cfa9c57b12a77c67801ff4e987fe5e67e00df6fbfe1d0a01b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fabd83e2a7139ecdd26c4aef555cf2abdd5d7b9ab6e712f7f13894d17300853c
MD5 b0878851ee49c714497497df05c9e2ca
BLAKE2b-256 e740b5d1b356d9f660731ac41d0c78a66212e715b08dc14668a478f9591fa707

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b6403f0fcb53d701884d9d157fab338d52c664e192f72d873dbb209b87610014
MD5 6701f3301280e27c883999a90e6909e4
BLAKE2b-256 8e8aea31aac3c27e557980d74efee71f73992ea93833e38c5f47c6a89ea31436

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3535788c719ff1d516be927274d4e7400cc830e3db18172e67fb627d29087814
MD5 ea364d25b1c8611414513f4d36e9e112
BLAKE2b-256 1cc509ebd5ddfbab445c7d94530989f3a6967d098353a258d0a8361afa45f55d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 63a5a834725fd4f431e1a183955010e6ade319a756344e4e4b8fd6b978475cbf
MD5 51102145905bb6c86fb3633f59220722
BLAKE2b-256 36bb4834511786a39e9c11613aa252647dfae9b4c2bf5d5922398fc5e5e4bec5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309021692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8bb3c114117f1f61505f3b80e7e0d7e8ea14603f4cd1bb6ef46e49a8e75c6e3
MD5 f1dd3b1dbbacfb18a880135dad483ac2
BLAKE2b-256 2765e8b00d97a8e63ba3d1c2577d1cb4b0a0888affd942efe3abd83a0ac36bf4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page