Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9627c009173f51ba9310a91395f1047392a52925647ef4596b8e562b6d0ebfcf
MD5 5db26c8c3a1ad5aaf98ffbeb019ed661
BLAKE2b-256 b7e753b69b9272dbb536284b66e042e2ed030259a3dbeef7c8489360359a8682

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b3406c6ff490f868b2f7b177e335ffcdb1539a3e9fe8d6c3aa00237ad1847bd
MD5 53b9606c958c23ad0e1d1b251519b02a
BLAKE2b-256 5ff251bab953faaff6243f4b81b63090a0675e1e3ca6f24b9aca6bc6ef0daac0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 afd0e12a27fabd1761e3288693d1f8755ad14738af8bb3dddb475c60562e1119
MD5 02d6e7029533c566112d83b5a9dc48e2
BLAKE2b-256 a91676e8dba35840bd654cae362445f1c8eadbf46e7f9b2d537a7010571bc3dd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3a16ad3de95a4ec225be1761fcfa42b1786addd4b6da9957aa71990c71b97d97
MD5 7d953eb7fa2f09fa7e9ef9c4a66a3ca1
BLAKE2b-256 06deded0b2454d90f9b46daaef6213e76bde56c91334fd20ef5ee94841d64e18

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5512da439a800378dcbbf4c2c5ebc1eacad060920ffac5ff0b7da9e7286bad1
MD5 47ffa17e5fe6f9ab1369e9b0cb863f51
BLAKE2b-256 49b765783f72e949b32618fc174523d43433400f35a4acd74abb9dfa766a7d11

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 59e96bd1f85b969a84b28f284051f8908c40d29ba7856dec136edd11e37418af
MD5 bd327258b4fd11010d0e3f7133c82f79
BLAKE2b-256 6bc04aa777c2765299b2ffc5a1c624f9b733c9656e87bb42fdc20300037b60ed

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcbdb690a1b1d73acdb225f8c68fe804fe846a78a46a84619588937219a8018f
MD5 e8f0cf8f229969c5b66daf89ec54c637
BLAKE2b-256 fea492aad66bcec78cbc96d4dedaae86cbcd26c1b0ec0bc7e8c199b7473dc085

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7631cedfe1910feb4aec4dfe3df31907127ccc86a3a5577a32133099909b73f6
MD5 158a75edb16b06820904e465a1f55b81
BLAKE2b-256 32bb813c72452e471171661665cf8bcba2a2830eb0456e77b448bc12b73f3bf0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b5ed2936fdc70afe09ec105fe8345fe75765fcea7d4be1c1f68238dd19e291d
MD5 4537776f206d4e53866d1b5cf5e4e234
BLAKE2b-256 5300e13fa89bba651b123fc4b882158773f2799687d269cabef9578f6dfb43b3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a89d87bd79fa70007dc023e4e659c52edff1c240a66edea0f28dbc34960214d
MD5 e68c03ca9f38a87993425aa27b5e2d5d
BLAKE2b-256 7c36d898d13ba6f66f942960efbc89a250b03efa9bf421b99b93332d7cbecd65

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 41cf53a0f1b682681669f2a2e02873b15dbd932ece47ed80ab6b43e4e3ecedd6
MD5 9663ff2baf35dadb15edcf8aa5cc428b
BLAKE2b-256 d9dbd5d9a5b01ba6fd8caa5391286c6d51cb03af54cc373ab9df46a1746a9233

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6b1c15d1e8e5bbef1d277a57b7ee1566bc6fe6dcdb364fddbf560591e705501
MD5 bc9074ea713d1580c9f9b2890071fa3e
BLAKE2b-256 176527da24c84d10b2b023276aaebff67061ec4bfa6b2a82b212a5929733757b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3499e47b23acd72c6b59f492980ea0afac9d88572c4a650b4959eea8198a84e2
MD5 76af806e1c829b9ff9082f629972335d
BLAKE2b-256 48b66d8f402d6d7b14ccc95192816eb3e7dbed372114b6448d5faa26820c2249

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e02d10518f7715946067df51ffb874e1ba4dc2a3db021c33321a27c6645c3f4c
MD5 dad9c25a8432226e54dcecd4334160e9
BLAKE2b-256 80bd4c63768ac601e1eadf960f4cb479a89f5fa495e8062387004cdd8a26200d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dfc4fbfd18780a432aa39e2ecbd6bde25911a1f4e8a4d22a7cfecf35e7aabcaa
MD5 744fa4c3cad05af24ad36c3c74d401ae
BLAKE2b-256 5ab56d3e09aabea2b4539ecf19bd31eab1693315caf634adf5b209e69db54b67

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b557d237b3599da50c8ecb41914d0e2a6c3b44d2a023271b636fd6346ef340af
MD5 d17d7ed9706a1c35a9d242a770397361
BLAKE2b-256 39298ec4da00f35be19dc6987537e2a2d58ca555e27c0d25f962ed53cf20cf0e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9694d6ed05dc2f998ebd75cf203d589ce7ae337d65b64ff18d565cd21fae4aae
MD5 5e39a9af1301d3921cd69448f2d89249
BLAKE2b-256 901628d1749d9a5544fcd370fa9ffc2377d813353f692a66e8482193cf6da161

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fab48cbcb875daad91fc7286bfd058028ba49e824cd78069b9021bbd46732aac
MD5 cadce61c54dd4b90eb66350f8eb38663
BLAKE2b-256 3c0b119ab52dfce832a758b625f1b082c43956043ddc22f57b7b3dd6bd0ec592

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0df8a989b254e0131373ac1d250005f5c6657f91a3f60fe976163f4caa4ff0d5
MD5 8b290b07cd7d467d091315b0c1663b8b
BLAKE2b-256 9abd1a33b9e651d8887cc4489c5a19ab5f8bb36234e0c52f99d3d5a1074f4714

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309061692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 072f69f2dd6c32ddf222db15be8382acba22e3f9e75a22886ec6ff3864fa7a94
MD5 3c321f3cdd519afa226180466a1d0f11
BLAKE2b-256 537d05fbbebe13aff992a247bcf27356c2a657e77e55fcbc058b255255df217a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page