Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d78e1a71f53e78daca1f316edda9c6574a30ff411c2ea6fcc3f33fe98183abd0
MD5 3929c033bb2a40086a601646ae428c07
BLAKE2b-256 05743bac86008a610a060b6c62a5832d29f23ddf560237ee5664bdbcd21158be

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66c4232a08a0914eed3b1c841ad9925db9c7894c1d69fe4e9c5a544df8917d4f
MD5 495b4b1b8e3830e16cfbf995986b9ab2
BLAKE2b-256 31e451fce744ff7764ad6434d68e1db9780467308b552dbdaa09acd0a0c34a2a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 365996d82041bfeb982421c340f1e3512f1ff7fee4b3a17efcb6e68ce5ba1497
MD5 cbf3550bd285e21dbc7fe31246c4046b
BLAKE2b-256 1f7e3780cba9f7913d93ee811bbff74873584e2de27bf8d8efa3187e3deb9ca7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74e727977988938c947226e492a827b5d9b638150c690a1adcaba46da302cccc
MD5 6d3c5c4b86f2344342246b4941a78ca7
BLAKE2b-256 8570250e457e4e1e4ae3011b428b6db3fe03feb12c7902fd2c680bda79ec784c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a6308831322a1b5b4756cd8794be99c13b72395e7ca2f23bb0be456395fc183e
MD5 33bee04f764d36f318e6e3dc6197b272
BLAKE2b-256 9a43073fafa39f207932330f9f2fd5c4590489d105c0aba3c728562b2730c26c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0481a713cfbcb447e50c8830fce85fb32ac262056fd007eaa3eaba3ff40eb931
MD5 e5e3c73e0c55de08873717c82ac8ab1b
BLAKE2b-256 eccefbc1f92427a64099e4dd16fe65a4f8024364add320ec49632d4aa26b4ef5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f91d3cc4d24f4afb3936a719085fd204ca9f19e430b66932e94817681926696
MD5 e2452bc4b61d8ec9f616df7c23025349
BLAKE2b-256 2bb3b9337ac177b829a4298f57d857291e4a389ae402011a418416367c57cdf7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5541a16ccbf1b7ccc07048702fccb0cba825efd58cb10604038c1c391b8d195
MD5 47c5e2cc3d4020222e19a0b6ca96bcb3
BLAKE2b-256 601b37e676f7d3c8661c6c684e435e994fcd3ea900f4139d8b00f998f1e06210

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8366e5c09fde30720177bf4afe42b8681c0e484b54e07115ce2e5b6edcfe7993
MD5 165027df59b511a8c2f5e9d1e2a76b30
BLAKE2b-256 fac17c9a5f1e81fb40e2b6af8a8685d3decd4a8f39280635075d0495426f3125

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 85aa27a9210563fc2abb216ceec2cc0849321a86fd69e8d0e3808a1a0d5f0b07
MD5 9d357395f200fc5e3fa6e83128e44b98
BLAKE2b-256 99e9c628cbe027d79fd7030208f4a54f36f737b603b99369dd39cf90f708cfea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0ef7ff394d9196de072284f18fbb9ed20eb9b226fc866fe84a50a15151c5b95c
MD5 0896e487a48383ac9f6afb58c8b8caef
BLAKE2b-256 7db8e4860774843a490ae63963dd3170947c5ffabad52f24a8de854d69a86b56

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67c52c24bbf2195747ed4f9f4866c4602e618fd2348e7f2cdab28d52047b1d17
MD5 7db3f72e222312716e1ac585da98d0a9
BLAKE2b-256 b77fcf7a4e2fe95fa240efee660f559bb034314ba72c424d896f875352ac3023

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ca042833c651a2c1c88bbcf10e0de34e396614ffd92ec74136d7b5bd1fda0ed8
MD5 7361dcdca50cec99909fa7b60452a29b
BLAKE2b-256 8ec8a34f3fd262f3f37906429f4df1797d1299eefab034984a26aef806ee6b1d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09f2a7c4baae450f7b601bf390dcbce9cfdd7b3158a953e1c28a3b49b09db26a
MD5 780007300f2d5821add65f250bbf9372
BLAKE2b-256 b097821205ddeae9ec6b05fe0f7a28bb17062a443821d9c134c782074df42baa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a1ca4706005c90c11ab11f425abcef055e8a340777ff30678e3c261b0115a28
MD5 004752f1a205a22db147c1d76105f968
BLAKE2b-256 57a47eb9a117c095a4fba733341585fa9468c17a224a70b5d7dcddda5f512ca9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5f83f0c2b1464f819c60ddb3667fd41f50d318ddc7cdce2117d26fbbd953e796
MD5 53c2f71a753d3edbf668286c3f9a76d7
BLAKE2b-256 fa0bb7dbba1431abdf898ed4457c2268d485503f7a8c4615081bebe09b7b79d1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dad560453b4610fe6241fe6473f5ebd15ef58df0f7d852a497ee0033b6e1e833
MD5 c133fd8b867ac3b05ff70c00a50b4455
BLAKE2b-256 0e3478fa1f859e4b6a93f6e4c27f268f70a373ef87e772f60cd03c9c3ab56d8f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a08d80f86cde7851cf7ea9d5c7017d7c56e5f1dc3dca0d3e8d8894b6ff58dbb
MD5 2b70c8221ca864bbd60dc111b199be1f
BLAKE2b-256 abb4f030d191c91d88dc640aaa42e65bc5d3931829ed61f9c8bee39506376d50

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bcf6fd316c62309cbc23eccc48ea06eccd4845cbc75260a690806438ac26074a
MD5 2cf0e6344735afd5ecb5ac9ce3ad6962
BLAKE2b-256 5662dfba0a62ebdf3504f34d3ed811b7585a3d42bb41eba6124991066f118a50

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309091692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 acbe97c71e10aa4b03428a4cce78c1eda938a04ad5b53811c8ea2b2322e55e4e
MD5 ff91abf809954b877d3692b3efb02243
BLAKE2b-256 cd08e788e3000baa97a7ffee45f0049f76283f1941710cb1e689c38079c9dabe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page