Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7aade00a68515f3aea524d0fbeea4bd13d0f0eac54f12071b6d809808370a4c3
MD5 772dc105dbe52acfc3fbeea300b48c44
BLAKE2b-256 1d3b875b01992186c3315215a8adc00bc8ae1fd724e9e31c905285fe28bc3c73

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b32db5a6e66f59bd2d06c269f075afe31bbfd69408cd8a71d874eb3f8345857
MD5 9d2aec08682d001810082233269625ef
BLAKE2b-256 b3917905ca89c1e2dee095968ae5378bdfd8196e42c6af867ccc98178313a8d2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 37c1cc751752b0b7442643f55ffe751442e757f7256e3e86aa78e06f10a185a0
MD5 1abd5381b4a36981e92cb4067a3a23aa
BLAKE2b-256 c14a4a7f385f02cebbd7eb8d029d443ffb1662a1a7d44f88b5c3df219f697f04

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea764a74e3b06ec6358aee66fd4810e9ad5a99b96e33ec00506e79cc0396b97b
MD5 a0c1e494b999b6c63fbd586e03988c5a
BLAKE2b-256 95ef8e0f9975bbfb3b2af56888c4408f322acbe564450ca59be91f8a7e45dc76

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a15120ac0728f9795954e85447f92ea6913b8e4683e4ec022c5fc92889362af3
MD5 a84e9d3a1a8a63297bcdb3ca02c90965
BLAKE2b-256 87c815b83e254d51e242d5a6538446d307668f5b025256f17413b51c14f595be

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 95869933745beafa723333d361871f53aaaea14a64e56dae7a25f73f48b53ad0
MD5 38b7ee897d841bfcdfcd42c8526a6795
BLAKE2b-256 bd1b4af0b0321173e16d95c7e057c2eb31a05ec7631715188977cbd4c33e16af

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5bad146d83c3caddcffca0ec0ef9226aadc9585bbda7b3755ec9dcffa2c02d74
MD5 4c889c2daef4857df23bcf7bdd6be045
BLAKE2b-256 d54869e25652e85a06edc827f0bedce6727946abfa1dea1a6ab1e0563d248ea4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c62a5a1a389f2eeb9679f68852738643009390ea58c0291850283d4a63ec7223
MD5 eec8507908f44289830376ad5beed71a
BLAKE2b-256 41346d43eb4408bc786657dca310379e66210385eff77b8dcf019dd62cfad11d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 962ff580c2da3ef0fde212145322e42c7c88834e533b8e9330f0079bc877b627
MD5 2e146494fbf8bb6f291d6335a9b668a0
BLAKE2b-256 bfbd5b2560ae99b722a8f458c98ebe95171520dd1cf5a7dd2cc722698f2d9b60

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 86c877fc34bb05cc0bc4b1f008eb765fd04564478dd96183b0afa5c92325e087
MD5 8236321cfef6b94aa463371129b4c718
BLAKE2b-256 70a7e66946cfb2c60cb7b14a2ade7fb6a372dc1931e69c8aaa9e6c206f194424

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d24f3519b72d4aab8d0c740425ef2eee77e4f469ddbc85016d532d46c77c400e
MD5 ee7b05a3c287c4b7af3d6dce3d22856d
BLAKE2b-256 b1f0d778fd49efc40286ce2c6ffe9d32a4f19f591e80f980121a87378197150f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 357f38a660f30642f62d34da890fff6ab7774e693d6f84ff11df78ec179ace8e
MD5 5e11faac8fc4cc6b01d163aa1a5532bc
BLAKE2b-256 8e0e15afe768512936a2f2f5e5456644db06bceefbb50097e91ae9717f227bcf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 05bd0c8106ebf8a15b085b365f83501ab8317c3d34ebe41598e5ccf2bbe39275
MD5 c5a9be249df9fb9068dc9d5c8c7d1d12
BLAKE2b-256 fb057ea35051612cda3cf9a401987e16c2a7564c9e14603c7fc23cb516d1240a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fd0ac5221508be06ac2b090ccf478a9f1d18eb19292e16b0d119701252297626
MD5 d201ac0de02cd631941c9269716aa460
BLAKE2b-256 77d7eb51abfd55f3b4ca66251f98e5e88112391d3e6b06e595cc1df6476bbad9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 37479ada3568d9b5ec613fba12168b766e8a612e9cfffbb987fe29a7cdb902e1
MD5 2b08a79441484263608dc54d083fec3b
BLAKE2b-256 0704ba0201f284862cbd08718a10001da33a66b10fe05a9fb2ab4eeb53af1793

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8e1617f1ded6bae653408742374b95fc44f393db38500f06dc5022cda7e55895
MD5 e22ecd756395c666447113f418e6b426
BLAKE2b-256 45f34b6b10988ad7cf75e6b86dd68c68ce70375d2b827e210a956a111bb4825f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa4b394e76d844adc19c2257975292056936d296c831090a15ec95bd66ceec75
MD5 81bdefbf888de354cfa28d3bae40e579
BLAKE2b-256 ed22a2169e19cde4636be828fab7bc29ad554de9ff03c98fd880403db596d1a6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3fb9aba6cbfea46accfe629159b9f6f1896b8abb83ecc0fd93cc624009f1df74
MD5 ad54f6f11e16a59853499329b3f747af
BLAKE2b-256 675e465ca2134f3b79b534c3204403ba3ba682e2be4aace5bcbd73e236481b9a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ad3248b8556fd8b9f61d793690d4d68c0ea3512e75f215d9b231581eac28af6d
MD5 711548c49a45d5b6223825f0cca6d5e0
BLAKE2b-256 0f383529aa57a86b37648ede1225121a0d35a44a77ce39684785c5935a48983f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309111692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab461c6b2ac96bd894e5bfae83ac5a980939036a066e47d2c12a621c234cffbe
MD5 82fefea27ff50db1109f8be33ea54ad7
BLAKE2b-256 082879726c65617b02ecda896fc9f8e6e4f0f970c244d42e0f81232dd98f942b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page