Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 14b212f48a1435f10bbceefc4fd646f06bec53fbc9dc47e41169fbfed4e9a597
MD5 a71691555e81db0e3efc7cfa0ec47e64
BLAKE2b-256 dc947e40ab6199402b009fde3c9bbdee12719c105460396a29803235205b58ba

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85d393524da7d5f04b3815cb4b22ec9909fbece330a4e618bbbacf6153689c29
MD5 f1c97a770330c917b7a59db70ce39dfc
BLAKE2b-256 d0df3e83f1e927c703cb6d675af51f0b1ba1c07611e8d7a53b67c095bfebdb42

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f69ef86a462645b70c3886124e79e2d715a3ae6efe1e0a1bc36821d60648f7c9
MD5 268794ef42f9c79e242adb99897c4360
BLAKE2b-256 7c687cc4bb8794df0928162c344e3f4a3cc7faacefbae1aeb40bfa5a50c24def

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 34e1856322fc6562b0f9ce8ebbcbbd983a9478cca59a88ab88c1c820633cc82b
MD5 2f70311c583c9efd402efae043c14bd4
BLAKE2b-256 de9d1b532c2c7160718d53df690436b2114eb4fb5d69114050d1f95eef2c8c72

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 04f2e40a73300c1db4ddfdb8c95b1093bfed2565b31515fcc71cf3c577397314
MD5 e7e3d9f7b7e47f57bf5daa584ce3a825
BLAKE2b-256 4485fccd0b14e27edab65878fb6c154fdb758447ab6ebce4622d4f2a0b3b0067

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e55ae7979c5ff21dee826d9ed49be88b30c393ee0b22257ba0b6975779f9a61b
MD5 bc699955708301c1eb895015584def31
BLAKE2b-256 fe987cd9532e47384ef9f80ab92fb271b09f09abc3f0a929bc8d9eb37e572547

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 786dbecd76d5bfa70ee04646ccf48fb50de63ca9b2913d5f2fe10e98e7e7e2b5
MD5 8d661a0790e0084feac754944365262e
BLAKE2b-256 d60093a4d8829878b990fd542e7df3aed46699d3050e050596e3b03e61e20b70

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b280dc799edc6aeeef5d7fc323f5eb7e096e6a9eabb87d95210d12976255dd3c
MD5 3a3abd606d56e38dce7b6bd5aa4c854e
BLAKE2b-256 ac4a6c63baf52dbe8a1f89fd444154edd61178782577ea7ded51b7d2416d673d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b43fb90cf133a8595c8fad18b74f3b9049e54572940e6ac43b1bf7fa67086afd
MD5 3baa5b1a81d4a90a1f335397f7f578a3
BLAKE2b-256 1279d7fe4090c92d9d81bc599f62a2fdcd7d4f23b7d9b83293925e66c71fd5f9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df7d07fe5e26abc6a9bd5494b5ab8726714cb130a3d9cacf863880bf000db306
MD5 a8986f8e943b19296747ba472d63d74a
BLAKE2b-256 d4af432294e0e1cd59ee58851fa36a0b07cd72590483a7ef9da5ab5019abd5df

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4bfe3bbc91c1d1bc3ce3aa1e144dce9727965eb1327467106f3d75482458cb49
MD5 f011d2090e0ac83a754460fad5ac60eb
BLAKE2b-256 3b78c8e93520770b912dc291b763c727ab7aa9ef48fdd975c9b6c1f6a8ccddb7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b728f1944fb7ea175cfab75066cb308de401f8416c2417938ce7fda764017164
MD5 376b75d2f251bb1984f3eb14847e8121
BLAKE2b-256 9d55eb61be4877ea6b89ec9da1b75250e16c6b51b5230560f12bb28363087104

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eac993d0494795054b857934aa5c6548cc21fe53c42798da48a7ad373c8b4db4
MD5 8c8fc586f1e434ede3bd5fbbaaf83cda
BLAKE2b-256 f06810107e93ca9b3f77c09eeaa36afc3c676be659d83ea6e591e37c1bf9bc7c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a95f99c11f5226a3b38d7dc061daf0ead95e1293350680dd32b05f56b115cb49
MD5 8d850fc0bed46b238fc836c25fee87ad
BLAKE2b-256 898c825e84e65a9bbc6af45c204b95158fe5ba3609971990f35811ca73ca9b35

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c4b91a9d6f1c31ce975bfc735e8e4ee4a630307ab8922d4e338c1ceb30430cff
MD5 dcdd038474b13b76694b9da8f2702b05
BLAKE2b-256 f0da942e20e44cc1fd5daf04376dd7afeac774be829513ce84909ecb87ed37d6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7e0dbc86b0ae26d793dfc14c57360f1355aa07d8ee63337ee59e1f3cefe2d689
MD5 357dff1db15327de575260df14446da6
BLAKE2b-256 fef045763b99e303b2c482ffeb815c699420eab6a78f4f54717c6f599b8316e4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1599c57ce9309a9061559a299a0afd0a4b3391f2bd609114d250adc9fbe6f06a
MD5 9e42ae75ffa76f2c96acbfcc8bcf80f0
BLAKE2b-256 df8c27cb5f5c44ae1f137541331244b06d145eb3661b4b250888f55603192aa3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ecab65ac674e1730a595d99457b6d825579efd017a7afa2974e7abec857e023
MD5 3aeabe5e8edfd2fae825caeb297bcadb
BLAKE2b-256 547d7ab3ce6bd0463098c2125ce461c511b077119fcdc5a6230f6439f547adec

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b10cb71690b419631884b6f1928983d434228c2729ef16fda7c7dbdbdcbb701b
MD5 6d89381e11994a440701bae4e400f3a5
BLAKE2b-256 7181f24fccf6520f34240d1d84fad0cea5477c9a53635b42fd173968a35feafc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309181692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9d370c4d4e5a573514a8fbab882e3bc45b2b5f48edfd9efa565caed973e301d
MD5 2be84a321c2f07b61b91a02841036ab5
BLAKE2b-256 987f9ee3ae9b6077b9e3707f393ee46a93c199e3301a179b0f6fd66e9d4297c6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page