Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1aba30bafcdb9e1570fdff194706ab36c3bf65985dbf5ecd8a13499872b2ff8e
MD5 05016b349883079ffbc17b6c931b1d21
BLAKE2b-256 6d280cd92095d7d8a2854e1da6878223e8fd4932c9ee8905e8eb85a0e18938e6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d6139cee32640c4edff2b2a991191f0fe1ca1f4a14478975d903e3fb43d24ae
MD5 4c5d3e6def3f5c89d97eda4c9e77366d
BLAKE2b-256 f0defd310d83c54c09822453ffd17304b78ed84a4554937fa0c9acd497f4def2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ef509d656f24b413d56201495cd8610a0e5f655f14d846ed559ebc3ffc37708e
MD5 570e89e3f6e9463aaa09131e7d007cf8
BLAKE2b-256 10d888ad7cc9c6da5fc1029549396549b8dd25277d169e1841ce551998cc2ab8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3315ad11851fd49612018f4cc9459ce5372f1eae2d3e41ea97bf0267944b4746
MD5 9c31b2ee70bf7ff7bcf07a71773fc73a
BLAKE2b-256 c4c95cb28614880f893b4ece3e1cb580aa46d5afb53c0944943de9e740004ebb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c89353f4f2e798f18172d1f4b0873b4bf1398ae35809198889e8c21b9dc7d9cc
MD5 882f211eacdd844e285a4dfc294bfb34
BLAKE2b-256 463d7d6987a07fc8146c5d18094867b2f6c511c8632f9125480a329c9a849da4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5ef2580479d9f9f5121f885e7879dd5c4ff93ce2645a1b52bb0ded04d4506368
MD5 32ed2f1eaca9be09da02bc2b4aa37221
BLAKE2b-256 0cdc4490d06e23f5c10ee7a4d924dcbdcc77ba4468263c1644266fdbfe66093a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 422fcf545acbb7d0ab8e160dbcd24a4c9f3524379b19b8b326d0fc5c433e8811
MD5 8983d72d8b48f2f031aa743a1f91998e
BLAKE2b-256 8cd361a89eb77cf8dbe923c401f56addf2f6448d7916139afa537be8a245c926

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b6810ca5126cc604ce0af3d2ffdb2b20beedc2afbb91b4b7b7f0fcb27104874
MD5 b52ffab204549eb2504f3892c19e341a
BLAKE2b-256 51403639fb9c04eeaa38a723038630e8059674c2832e846a741398053e4dd1c2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5734e0f14491dde799df69a7f85e480fca02aa828d8ba85da20527e3da73bbcc
MD5 a4665ad0e8983a5c313a387ea6a1b10c
BLAKE2b-256 a209cfa4c1a012535f69e71f8cf933ebe468a099c23b99bb4e9d827b56670bf4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6d881573402fd83667d8c4a83b2d55cd2daaf6ccd838f5451fee4ca74b5e320c
MD5 7b534d8b6564719cae178b4fc936c91b
BLAKE2b-256 09f2798fd950d1447795eec1cb130caeb0d65df7002098be962f715b3d44a2d9

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 122fcad4be8e789a82fffb0bf48bd036967938469b17070739365374c8ae9120
MD5 0332e437c0c3a6e48074185386e9d36d
BLAKE2b-256 839af60111494de6fc3871ff120f28ebaaa0c33eaa7c57f2467092ec7b201592

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0232aa5c5e4d21660da2696d5f04f786c05c03d3ba1f6f13fd9f65d9619f0537
MD5 82c3a66e0718c678c530e577e415f2a9
BLAKE2b-256 8ea56540dcd56612022310666b5feb9a825f83239eed1ca2bc8b8012d6475220

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 601339eeecb006aba06aa4e5cfd0bceb9a9d006c35ad03e1e710ae47554f8c67
MD5 3e2175d41c692cdb6699b954ba30e53b
BLAKE2b-256 35ba81185ceab5972c267503f43de9f28a065f5f5b7cfc2d3c7f7d5244e689d5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08e3245099d220903306bc2f23d3ef6d990c417d9d83da2b61399e2986840dcf
MD5 352e91645ea6601d48da088a0350cd1d
BLAKE2b-256 bf77380b5f6801a63fb6cce4d15eaadb04dad082bf92b88805c9ea60969e13ee

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ed1e3bd859f3b14e946f203673db2d9a3a5034f501861b3f41abb4be3c10beef
MD5 099e16ce352277adef1690838917ef46
BLAKE2b-256 e0b1b4e2120ee7ccc3a9d5e0f561d1c5f130e74c1ab60f2028237023126fdd8c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 64b94e84fc8cf01d250e8490fd031ab5ae8822f14885affa9aaee8a5c502ec86
MD5 4a803e51f4c8302694c102127bb761d8
BLAKE2b-256 efd67a0b29f1996065971d8c4248bbfd4e33474b234b3503a11952e432c37e9e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cfabf29adbfa11de8ec33d83f3c8605ac6fdea2f5071ac358a67027b980c3f6c
MD5 5bcd88e6d8ffc1a33dcc6e2dcc0c577b
BLAKE2b-256 1f24ac9d1ad6be69ae6c8c6a881ecb31a024310531aa310fd0be44a881f066e3

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3db5b40ad621fb5d0de51417589eabdd3164d68ea2f5524fade4decb6caca853
MD5 76930cac5ced49c99f88778ed64d4e1e
BLAKE2b-256 44c7077fd7fcb3676815446124f20c9c85cd7f097eccee1ffdfdb51e86869f53

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 da2ca41a79725984f3b2f972fedacaff182729a804f90727de21828974ec4151
MD5 dd7f3e4e8187fb36b70a4aa56083312f
BLAKE2b-256 6defa77708a2979e2c29f999f4ea03da40d20c4fd3958996676008ec6d5de2f2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309191692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73fb86926decadf613c87f5b4624c36cca759ea1c0cfa739d54077451397001e
MD5 68c7644eeb39cbaac6b5d431890b3f6f
BLAKE2b-256 afaf32b836ab5c53f3bdd9b3a9b40a4216a73d69e77ba49418bb0e3c2693addd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page