Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f8b68703caea26e8ed7d4c862a7617c1f801f70d119b237642ce5ad711cb4d3d
MD5 cb9be078396f5d37a8f37b28627a57c5
BLAKE2b-256 f94a5adb826a6f025b2da8478e61ad3f11dd029aed12a51e74ef6448dd7c9612

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b2fe1d8deda92e53014481af05f137960d1925275ec821304b8d6e70c69445c
MD5 a06675b2f32d3f3895f08e27b45d1bf8
BLAKE2b-256 8ef843c3799c78136addd9e232389363d9cb755cb51cd6ef7eb10e21e3fabeb2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5844ca6527ace35eb920920145d0a80b11a40fff0fd1a0bc379d4afbf61e5f20
MD5 b688f30ca385ce79ddbd3f80e0a2d67c
BLAKE2b-256 5906f87e59a8d3093688725b0c6eb5ddabfa4b7e9b320680bc95e61fa249e6b0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f0f230eae8d4b02270df262f2d44d706429e8631b8b6844111cc304d1fae88a5
MD5 e38947cad7ce12e00679e1da639f86a7
BLAKE2b-256 9bb62b2846cf313c66b15a85f0172dfd68ca712e3c31c2c3052dcee0ad1c1d12

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b97b954040ed06def20ce9940c9bdd7f1e8cd8b2b4402543d8c6f1087e92e05c
MD5 0d6b8302e2f9f6457cb612d8a46bbed7
BLAKE2b-256 4e4f58aa23ba16e238bf6079b0af40a1cb19824b9aba044a64edc7b491f3a878

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c3badfe02edeedb39fbebb90455fdd9018ef6f1f6bc4a1d0943f9b359628d133
MD5 ca950ccd3659c3782b32e2e5630ce6d7
BLAKE2b-256 a1f90cdc71973cc497abd53e3a94a6647068a0b043decb78dbfbd05dd0b238c0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aae44adfc0dd4a120a3d0995ee76178314ce8ec2407865565e81c0ba4bb453a6
MD5 d548b40aa5bb8de9e4d750b9cc7232ae
BLAKE2b-256 505532128a730a883947db7d23f74b86f5343060871b3b4f28b8a27acecd5fb4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d080c1e5e9774c9d49d419266cdc2f4a9088a2ba85ea7a04d98d21dde34e6d3
MD5 8c324b45d597a79ab7ea6adbbf01bf64
BLAKE2b-256 873e981d46e277ec2b5e27f6832f57c8f1570b79dedf60a452728934d2556869

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02ca57b13dc199610b5db4c3928f0feb1eacee7c6903eea2c0d75b51947ba1bd
MD5 0ed54c04dc920f8dc666c9978e46f124
BLAKE2b-256 cb4d8884474e06328634794516dbb339f0f7399fe4ced4447aa5d967816cc587

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f509f8334f73fb22300105d89144a55e4ae0c2c151ed0d060dd8de31166f6b1
MD5 7f72c91375825847515f533e5001a0bf
BLAKE2b-256 e851faeeb7dae6c84e0554c16063f721d5e7e0af114e2bfed0b0146c101fc076

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 389847850c9f34776a52b9af4414d835c2c5b34d9549aaa9f0b7bbec1bc09512
MD5 451100f2919959997ae454e152136d46
BLAKE2b-256 807b61547bf9be66e97d57a64b6f808a00083cab633e074c70b452bb096db21d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 02b885ee0569b010abcb36d6d7d25938f965a2782e018aad9dcef6aed084925b
MD5 af6704e84e5706248f38afc3c81b1c82
BLAKE2b-256 d00ab376d341fbab126c2df6c1c1749e6f12623f4977caaad647a130d50ce698

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb5d289b81aa5853c3c292b902cd9d392183bfd5667a9a9d69f0ee5aa4faf0ee
MD5 093a76a14216a227c7893a474c8df2eb
BLAKE2b-256 f5ab5342ad8fd6f187df3b54beb373568175031475e235d1541885e359208dca

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5eccbbb4f8a25009204ff3805ea34657b6d74661099384cda879f2122d55aca2
MD5 c8042a2a7c1b58a7c5bb433d0afd6da4
BLAKE2b-256 7330f61a5fb9ecaf047731410b94ff64344abc1fe25a3c5ff48b2cc81eaf20a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6a91447f71e1058e16500cd1f5a93a7b55f8d7176121bc99e2befb8fd910b776
MD5 33b1e0c8f1a7fbaa0badc30a487ab207
BLAKE2b-256 47169ff24466f4421502bfa62da3531b1f1b0cded78a9350c635c2e24cc564e0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 150f05d8ee1705b874c948e3fc211dcfb997a2421a5fa0beaeca713673378be4
MD5 1b2d5ce1956ef0abcafb8f495302f45e
BLAKE2b-256 773b743fd25d090af7c9b292b576c2cdce4d1c9da8df2629d4a57338575b815f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ad7b25890e2463af632974f4d1950588f72a4d49088a021b3eb8f552b2a01fb
MD5 fdb9c227a51ed0878c5550fde95af697
BLAKE2b-256 c14b04fd785648b0105871b8e4497ce3546f9cc95029795fb6b2e7714f8d2bb6

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fce9ed6a417397d4aad7a6a8013927db2953b00132bc34677edea14d9e1641f8
MD5 92a31f68c690b00fa86b960fb66bde8c
BLAKE2b-256 a7634dece9f4d0fa72e317395daab082f4e6af7a4c612413c2a684dcfafc77fb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309211692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f5ff2b809c0b8f6f19af121813fc630e8b1472e1fc38db4c9d07b7cd4954f81
MD5 0840a4abe7d3181437c3dca129aadefc
BLAKE2b-256 a3ecb74ea717006ce97824b6c49f5dac8b403257e85cc8f68f9c1e074ac0820e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page