Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c3622fd0cb3c1d91f07e91eec8aad06dd2c296c3289bd23f110fbf6b5ed5dfb4
MD5 36df6b0e572c6b63f27bf4a023f1f583
BLAKE2b-256 c94707538a6027d9475d62035518db36f3eb68b7614a9d6b9d1316882f1aa9ec

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3241883917e7e6a057aa8d77dec31aa9af5eb17dcffd4deeeca2c89df420b502
MD5 793a2eb98026d091daed4b44e13eebbb
BLAKE2b-256 3244016e341300a778b8efb47e19dd15236e5ab0d87d15cd9eb38a6ea2b7d89a

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97817f9b1a5ead8c72b5d0481dc19532c8687e8e0191e6982684bfc95eb2e1ef
MD5 2538e5d29fda1300c74a915bdc639a04
BLAKE2b-256 f965fee5aeabe1c4835c89ad19ca1525447aff4eac2ff7370e4ae9c59356fe4e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e29be9dd27dd17a571a1148c7b4e1aed62524cfd8e0f399e7b7119e9070e5d3f
MD5 1e42e6084e9937d7610214d3e574edcb
BLAKE2b-256 ec2780ae515e961694ad050c647f5ae267834a82287f2efafff042e1065f98a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 45f60d61e040244d17974845c334bf012f46aac10b73fd283d75516d06fe32c4
MD5 c1276b6c4fda7c91ed40fd850db87c3e
BLAKE2b-256 e8b6d50440152e1646eadc6124c187dc4e5954f556b1fd46f7f12ece484fa807

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6d613ef50ecc4d8e24723b1abab5abfff469f0511970b4d81c7455e178e2a767
MD5 04c6a59aa7c0922f08cd1b44b2ceea66
BLAKE2b-256 3bfdf532e02642cd5d8e732a6c867bd6d7f2761c2d0f279099b8102e1f8cad84

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4d106458f188afc5f283e898c7774fba2470dbc9a0fe493749db057d6c960c2
MD5 ac55f6860274554eb878843ac40a37eb
BLAKE2b-256 7a32924e98a6a84148d730064a298ad4438e4ad3235824026468143807682376

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c91544dd4c80cfe548b12e026d4210c98ea04460e95fb1f140f77447ab312282
MD5 baef2958bdc8fda53f435f2b1e7fba1a
BLAKE2b-256 3773638c284f28047c30a94783ba53399c7ebe2110b2f57ff951d43768f2a618

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b45de09bb054441d8855d775fe5aa4c7aaf1b063030a3bc4b38d701b95445589
MD5 6e677ce0266ab9aec4ca25a083a2de5a
BLAKE2b-256 0cbb503c78f58961f0b90e2281250a580e80249ec880cf5e9c8a9e3e21261f20

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 080b4e85df44406add11d1a937ecca447b450b1381da9ee0a1aae70fd03bb62e
MD5 7939418cb350ab5d6d27c420342e22b8
BLAKE2b-256 7ae44183963e5fa86ecda6f8f7db6db08e6063a0b0f19549f39cfd1699ace629

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 333ec62fcd0abd28fc2e2e173015d902da3a85b43bfdfc420d22e1f79a24ff76
MD5 c34f5612efcadec891655559568497f2
BLAKE2b-256 61fef556895d46aa178d79ee4685bc688949052bcde59000a7df57ee9724d0d2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4cb7deb293ccaa57cf2c2785081b74882456e2af57a94606bc2b8c27433d96d
MD5 396deae26d00833fc00fd11e52b0247e
BLAKE2b-256 1664ef0ee260e5cdefdce212d285ef0b02e9c42b8d665b3232626d10b3b7b817

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ebc803a0bd5419fd9f9ede0634076c57804f720538704438479c9e9b4eafcad
MD5 ad2e649242d15b9506f361e160d0173d
BLAKE2b-256 4caade9913ae94844db3704f472f6986e51b9c19ce3f85625fec7603209dd3c7

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11e0034fae9215b2d20ec876663ddde2e0c1306662a60f1ad002fe4d060ce135
MD5 65eb499c189f744e0a710a49f686eebe
BLAKE2b-256 e7e2f6ddcd74b595494dd26dabab41318450ea180f636d78f4aafbd57e803e3d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f6d4ee60524a6f86ea3f48185c683ccdc992fa5be5cac1194e5d712fd84da768
MD5 3b6c8d48ae565c900fb4635d29074a3e
BLAKE2b-256 aac341a0d657f6f43c5d0e76dd3a6118433534a2857265703943c5197af0c4bc

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e5b5f0b026eac10c54584dabeaae19187199dc8a49567072ea3750391498797d
MD5 6db5da21633cb59587652741096a38e9
BLAKE2b-256 b1c5adba5f396573b103a83c7e8aba7ba3db3b76937495aca8b50a3ca36d7088

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 508ee8206137f2df3e68d543b6f70148cfd26454a6e8888b62e89aadc8a148fa
MD5 fcb0d5b20dd688b19d02517758b1ef2c
BLAKE2b-256 1552a136067456ff8861fc43375f3bcbf084a8eb3f27293e3ae37569cc940bcb

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 88e6a74f9d0de903b86bc4443ae12728f79578051970f17758878e00536b6327
MD5 59062f6ae5c8d6b8f7ff0cb73ad6295f
BLAKE2b-256 523f6c34dc695c74e31688456ec0df8c778c02e0a82f5142d06c86a9c2ec6f17

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 70c4add49c5739260d2eaa3bbe28e3d5e98e126e2f7bf2e2c60a351672e3d2e9
MD5 0f0029f9763dd268d2bd12200e0cb13b
BLAKE2b-256 5912fdde896e3b3e912d38b9f180e970afe4ef40b9b87839093ae01d8fe14e76

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202309251692362912-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa2a9b3cce6f8b425de911903c60b4e0f915671a1245cc4d0f2dabc33ef92cb2
MD5 bca6129327dd093fec75a5b39f9b6c6d
BLAKE2b-256 5ffb93212cf2de33530d81bee71233eb284992eb2152fc3b8bd4210f0dac9667

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page