Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cc52e7793f734c08788a3b25e57e96a3a6d96688fc6a80371ae1a8281e357da4
MD5 7629e17bf1cb26f5afef1c8e9d1cdf9c
BLAKE2b-256 645df50cc83f239642a095ff0c9155a156f5a7803e32fbfe5bd13397a3aa1b97

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 88cf76ae25ceea0164185a418cc98a33b91a8abaab036b9ec15c7cc452620127
MD5 3869ac0dd5772df53e2ed8307051830d
BLAKE2b-256 3bcc05e6391b3dde17c937221ddfa511c51cb314733210fd1bfc5b822018ecea

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17773c2c6180feb2b1355db6ba79b8ffe79bd18b801eb6be9ddc654138373712
MD5 aafb63c6160ecdb44d1c3c5cd9fb3f39
BLAKE2b-256 8edfae8fe17ad52b48f3fd5f0924bef56a746c4b8a18b693cd4e470e8b142f26

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 674c32b105d1a4d547b3b1b94d46ea62214baa6e46b65a4f226795d1ed29e99e
MD5 d51119635f5498811680f72740da4632
BLAKE2b-256 c9f0ba3678c3cb5f6a0fddab25d0bacb340851ce1bc52d8aca7c1b79604ca12d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d895f82ae8e840e90ed9dd04b2da541d52871e32b04129439e4b28dbab00d9b
MD5 08200072b8d0e5fac95f24652c1f4d2e
BLAKE2b-256 bd56b36cf62e20b2cb38f9eb6e272af2877666df5aaead055c9b0aad48599384

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bd1fd084ee4e5a2d4d37147836cfa768fa7ff9e23429b2ed8c21a7c77477cc5b
MD5 7839f5499832cd2369be7ce92b1d22d6
BLAKE2b-256 73f62141b751cbd4a26e73aa79f2365649ad3dc964cae4868045e703464532fa

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae22a5e0ab0939269ec6785048c6bf108adad9df4f77621606f6fe5d6f657aac
MD5 3ea47da5e128a853350b0d9a2dc11ad2
BLAKE2b-256 bd230821fdcb3dc8adac8942c3ee37f0a386087066a861fcde8b0301699e9ee8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18af5ca05d6931bfd8d55a0a119beeb660fbfad4828f045358314b7be9b81414
MD5 96daba483572e4992651666d18872f9a
BLAKE2b-256 c9a3350091ce191e75391822f94683cabdb98911e37362a0f6f789f760e1fd08

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 21540202a95750ea4931cb63da7c346a9ad7fef33ce765fba64ac123b9c50760
MD5 7d9be473260d44f9a3639180ea092191
BLAKE2b-256 fded723762219cc804829d68b4e94efed2c354c91ae80c9a619e58e15f76d302

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 22540299bbbe0b2bc6a8f8976d702a546dda8073be6f066f1f88c0ddd3eed6d6
MD5 c89ba41622bc7230ea5238a3b8502cb3
BLAKE2b-256 ea9d6699a6d115a7ea297e0d8d456348d1192cc0fa2f14a9d057c36ed88d5557

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a3fa4d5f81e6ba259b6c0b8b5f5a3c62c4e7667377b0a933fe70948daa044ade
MD5 8e255d7de8d9e3af51e6b84148a40394
BLAKE2b-256 84d0e4de2cd0d65aabe02e6fe623483dac3f6f2a08fe241bb621a6c0ed7731b5

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ede1c738013da17c7a8a0495f6d936a697fdc8efbaaa711ac02f46624c1a3254
MD5 e8eb14d861cc819c281c5cafd5f37489
BLAKE2b-256 5115637d57b884538c5ed7244541f150be1c2e3113ea7bf6fbd16e390ef02437

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 39775001569105c95f43a362475f75198414e1c9a547d9464842c0bbc903bc68
MD5 374682be75051ab90125814bd5e89bbc
BLAKE2b-256 dc0f7e4eddeea2066f18478dfe6fa2d000073a6dd69150452c539b6f27de1bf2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7b79fdad8b440865fd2762b07614c10257e2976a8134a0231674aefc361b9308
MD5 ef620be4374dceda6f1a97140793c7c0
BLAKE2b-256 fdf83bca9a2fcf2568b2207223ba826fe96d8d0b4a2025fa420ad41960a3c0bf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4fd972b2c03185c126874e35ecaa754817ca27922c17bc7aa365db196c180f4c
MD5 3d264f3495c2121076603bba75858555
BLAKE2b-256 c59364925f60d9ad2c17e4193a9b1b86be45db0077e67f2efaa8ee6e04f96537

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5fd960b8a43d6ce1f6e07a57cb9cf2342cb068b2d634a31556abac0e68a7f855
MD5 d0babc45e7e2298cddfcd535ecbdff49
BLAKE2b-256 fca82242bff30ac38b43a1064662b12b8d4d5b834f2e74aa804136a54791cdf1

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dc5c3e905afd3cedfea4770b160aca764cffa4d3b35c266dd62d338af60d3ce5
MD5 0e494b23d3655c7133497058915e288b
BLAKE2b-256 8b9cad8f1b00f2bb3e1899a9306a8221d6fe305725d3747b458826de802a6c59

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 975825805775f861050a4edfd3407fd6e34887e2c50e49f520d7127eb75fe4e8
MD5 c9cf8bd5a954beced03f9e3c54451ea7
BLAKE2b-256 7ed54f2e09899c5591944bef3365d0e8ee778806fcae6f9d4f7834e357511f02

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d803d66ea1c4306e8ff2d213b6c46637ec115716eb5eb3a5515864e49e723ec7
MD5 01135f4b6e8444b387ba0f78c1d9437a
BLAKE2b-256 f33aace81428444a24a561ba8a1bfc140b7ae9416ce515b6f2e809e5512d70bd

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a082630021dd51e3e487c6220b069af227540f46ab5e15534f13cef0e0d3da3
MD5 e356c9976e00f0b3ffe26bc854ebb9c9
BLAKE2b-256 5dce0ab2ddb95594f406d46204e53dfdfa2d3f01cd0085644d9ceab5767ca379

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4d543437a8472f8a4adf375e973475972cedea4824feb14baae63f9b85fddbb4
MD5 1b2146e550e5dd11fdff944028720ac4
BLAKE2b-256 a5204add60884ab2da64f83e931a371022b0a182fb2c54fd9fbaf6b5fdd0d3e2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c319e54f9b4f135a16ea2875ec609d26db211b28638fe9bdbd556537859c9fd
MD5 d574b1706556ba5c1af34dfe0023a36a
BLAKE2b-256 cef09d62ff3bc9c570f7fd314f6189d87059e2816b6006e01cc86997cb2811d8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74f3de08d8cb342830c4b79c9c3c67b2eb73f8019880913aca406f0f1237af65
MD5 2e27639f9f5affbc5b585de9cc84ae5b
BLAKE2b-256 c5e6d0958b1827d8f2192c2d36035cef7bbac2b2fb98c436600a26f7bf598f0d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 783d076902a589f7223f90b37d104a9dbf00882082334537517129af1ff5dd45
MD5 ab2b0c3c7a0d426d1f01045cfb60faee
BLAKE2b-256 65c5aa23bf386d8eab751b8dc82dd7b3407b52c8932ed2d3d596a101db0b8685

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310081696611104-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cd0f5febd42bc3d6497ca433d27392cac17d7ef0a766e016292eeea1b4b33b3
MD5 d03adbb3a9f8303a95bcfcfc6d0f1e5e
BLAKE2b-256 27f4c74f6a66ac952aa6eca11599df882a8fb8a8e89894073e0819969331b036

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page