Skip to main content

Bayesian networks and other Probabilistic Graphical Models.

Project description

Description: pyAgrum is a scientific C++ and Python library dedicated to Bayesian Networks and other Probabilistic Graphical Models. It provides a high-level interface to the part of the C++ aGrUM library allowing to create, model, learn, use, calculate with and embed Bayesian Networks and other graphical models. Some specific (python and C++) codes are added in order to simplify and extend the aGrUM API. The module is mainly generated by the SWIG interface generator.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-macosx_11_0_arm64.whl (3.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d9b0981cfa21217136887b4e9fdf79c39bebc897eb9471bc7b6f3532099e8e23
MD5 a94b38b13af0f598a404ff0f47cbdc70
BLAKE2b-256 1875b8ed01d0cb1751d14e2592bcec145760ec6c713e5292d920bc6cfe09b82c

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0da03325aef68e32655e4b9a27302c42850ef95108ac7929df2d82be6ccb2f9
MD5 58559b008e620c362694324f5632dda9
BLAKE2b-256 067611983cb83bc4b077163ff1f519a34c199e550d13650fde43e1ba10452016

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 85b4f6a840afb128eb666a6b8c81472d79d97dd9807c7dd55dd3939f24a317d6
MD5 85841522fab53b07d36ed4057d6e9e1f
BLAKE2b-256 73876c89ce538018cdaf19113475958028184f076dc8a8dc5628d3e1f5f5044f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e7c471b0781bc7dba4f082e492ba26f93492db54884d32fab5ee5b6cd5d4a59f
MD5 e9119e15abc2b9076ba1fe11767b370f
BLAKE2b-256 f052280c02b07db76e2c7f62e7a88a5009b89f25582b5d5c042a786734dbe653

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 912548a0e2a8110f4f66a49cac95b202b89363f0ab28de5066fbf2400b9933b2
MD5 974aee5521f2f7a2ad13a8dc651984af
BLAKE2b-256 6d477ad7eec4e72511a9ffa6609b34ce0bc1885276a3e28d5bf289c9b6c30c3b

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ee5b48615d78e39c2ea802567ed5add44969516cece4ea459d623e7d7af69df9
MD5 0c91262738d28f4e432aa918c2b22333
BLAKE2b-256 7524a5879b23872d0fa0407ffc5d95b79e29d3f0e7c6c917819f6fb3e4ffb2da

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d386b7c08fbe5051f8374392db17b347aacecb5ef3d0f3f84b4e5f6407d61b0
MD5 c32ce748ed1b4fe7e0919fabeed0805e
BLAKE2b-256 e60e078ae58e8f7923596b00be7f1c32a66af66fe066979f8c87a8991a74b04f

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6174d4cd942e3ab44350e0b4a55a69db4ce0586efe89b61150254496a56077df
MD5 492830a62181f6794e8360a5ff7b95fc
BLAKE2b-256 04cbc3a773c8df3eedec497b03f5e111745063ba842f400308e9dde4cd7ed319

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e89f0b86309bb829bf20121ee50e5578c31f9e277b8772893f63376c8356a7b
MD5 c75fcfc312884f2fd44827344f911b24
BLAKE2b-256 8c083f9adcec3f993641e26165e3eecc3f484820095cb5564f0b3b0879c55dc2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a5ae5b93ab8ea376fc9706dfb9b8b67b3897937f0e419f63e7bc725162202b85
MD5 13ee27fbf5ab534db6ce6ff423472ea7
BLAKE2b-256 7f9b45adb5564b013c0f472b80e9f74b37616ec9925a8302aa83ddc1347a33d2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 90249c7f357d8a90c2df0f21138281bb908bdf2f914c7d8a2e16646965e7640e
MD5 5832cadbf04d88c836e0f1655a3b45fe
BLAKE2b-256 83c6883559617781eb0fd917c46ae814342b87868723be1b79ba6cfdecd868c2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fd5485c648fadc6753d739c1061a191c060fb1d3775aa0c0671beb79f2fd91b
MD5 250521958880d62a5843941c8ef317de
BLAKE2b-256 3fc2181c402ae50cb349b2bff21ade8f040329883f02ee587b143be95a0394a8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72ac5a8b56d6832abd62e2323d5270c703df6f9d16edfa23730c0cf03f9dd781
MD5 eb84390e7ddfdf5a6d7eedfd8281016c
BLAKE2b-256 16a0a555206ea984bf86e2213008eef09e5526eb040474881b4f97a6d8f82fb4

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6558e84818ef0838a50467c8faa0b119dc77a7966ce8607d7f33f846ce58158
MD5 e91810b37c92db4b9ea45f865d1f60a7
BLAKE2b-256 e8794543e24b7bedfc83138c1581d8cf3fb95a5d317e6234f25a8b1f2b8bfeb8

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 489f9c1f74cdf244f0ee58fe0566fcd3749faaa8ca19a4d8d242458dc138e2c2
MD5 cc0cbdc0ce568e5f2e7f577df62977ed
BLAKE2b-256 2c6ed95e0c50b4cec2366bcdebef756e2a84595b76309f0a9eae20d65eb86e3e

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5fbec4e34fc866a28277de32e8620101d99896e8dbefa996e832df6789e16580
MD5 7cf907b424468343e7f2c95a356345f7
BLAKE2b-256 84cc6d2d3b13a2080cfbfa9792321774075d119b4fa37902c5a9d93d8eccf13d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3fb11a05d79d720d997251dbfc9e4fb094b6e72e9d0e15248a3f6984cec04c94
MD5 95caf2116c4b278058f5e815e905fe9f
BLAKE2b-256 a9f5c12184ad06c1849612aea9185a12202ca26be25499ebd1ee428d64ef7528

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ba4aab75b976ec72b30af19b9d87b42945e681582357279909ff2e7bd4287b7
MD5 9237035cc2731b25737fda3ad8a9c3ee
BLAKE2b-256 28fe3e661a933393bfd1e25ee96806e72a0c7536f29b356a6317c5118b8bf776

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d1b51a92bb0c888ee996f65c5e295e34ed764edd8ac1ff1adc056036d38e00a8
MD5 dfc059e712b13876cd448c5001083b59
BLAKE2b-256 92dd34f8837118c6045c6bfd26aa5648aea341535f2dffe884278fd3a77bda60

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b9cb70bf4e6da836789b13064b4aa5d4f2196e40ac6f4b20e25577773cc5018
MD5 e59967b79fe8c7187bfe99e906d15b2d
BLAKE2b-256 4c224da32620d6767483f9f2764f8752d26c90e4735a81ba98f87e95a6aefac2

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f31ff95349e355e85c631145dd9281832a9a126e7643d637a69cbcab6cb257d3
MD5 3355cd0fe2d75acd0a2e5bb5f404dfaa
BLAKE2b-256 6ec0c282a7a9ba4eb54ebab4700a1cf217e908920bed0e5d43f1f855d2532ed0

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30955507ddf3e091b2d6b7318045d09a53ba62984df0923badbfa21cd7ec5f3a
MD5 f7f9d3208a8e69fb39b6d2481521fb29
BLAKE2b-256 266a66fb0b38109f887a9dea330d58d43c7606643107b632b8e5f5a72f9ba77d

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ce5c507d3ddc07e6942eba72e952ac362c33d3604baf5a33a08d962328eab9e
MD5 438988a0d7259f73495fbf36b7447582
BLAKE2b-256 f13626a95e9774918bc0d2edb926549cce13a95c179ab4807c994beb5b61c5bf

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8f393d3c9e3d866d9ca77b4111c491137f37b47cc4b3e3fbaa6eb1502e681139
MD5 0a1683e5f2c7e73200aaf97f4f9e105b
BLAKE2b-256 dc45242a1574e73317114439c32a0a677c7fc0d07edcfd6c5c8bea6fd8dfdc43

See more details on using hashes here.

File details

Details for the file pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyAgrum_nightly-1.9.0.9.dev202310191697564854-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 99f2e2728286e66a48fa4ca55e4e8b1d23aa66a543dadf3216f26946171b2e80
MD5 0d20258abd21843e1f3c6cc2a5441aa3
BLAKE2b-256 30b7f79a7a73ec332c17a67d645a46beaabe9cf623df61c3920bc19ee520514c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page