Skip to main content

Python wrapper for cppEDM using pybind11

Project description

Empirical Dynamic Modeling (EDM)


This package provides a Python/Pandas DataFrame interface to the cppEDM library for EDM analysis. Introduction and documentation are are avilable online, or in the package API docs. A Jupyter notebook interface is available at jpyEDM.

Functionality includes:


Installation

Python Package Index (PyPI)

Certain MacOS, Linux and Windows platforms are supported with prebuilt binary distributions installed from PyPI pyEDM using the Python pip module.

Command line using the Python pip module: python -m pip install pyEDM

Manual Install

Unfortunately, we do not have the resources to provide pre-built binary distributions for all computer platforms. In this case the user can build the cppEDM library, then install the Python package using pip. On OSX and Linux this requires g++. On Windows, mingw and Microsoft Visual Studio Compiler (MSVC) which can be obtained from Build Tools for Visual Studio 2019. Only the Windows SDK is needed.

Note that the LAPACK library is required to build cppEDM.

OSX and Linux

  1. Download pyEDM: git clone https://github.com/SugiharaLab/pyEDM
  2. Build cppEDM library: cd pyEDM/cppEDM/src; make
  3. Build and install package: cd ../..; python -m pip install . --user --trusted-host pypi.org

Windows

  1. We do not have resources to maintain windows build support. These suggestions may be useful.
  2. Requires mingw installation.
  3. Requires gfortran libraries.
  4. Download pyEDM: git clone https://github.com/SugiharaLab/pyEDM
  5. Build cppEDM library: cd pyEDM\cppEDM\src; make
  6. Adjust paths to find gfortran and openblas libraries (pyEDM/pyEDM/etc/windows/libopenblas.a). You may need to rename libEDM.a to EDM.lib, and openblas.a to openblas.lib.
  7. Build and install package in pyEDM\: python -m pip install . --user --trusted-host pypi.org

Usage

Example usage at the python prompt:

>>> import pyEDM
>>> pyEDM.Examples()

References

Sugihara G. and May R. 1990. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344:734–741.

Sugihara G. 1994. Nonlinear forecasting for the classification of natural time series. Philosophical Transactions: Physical Sciences and Engineering, 348 (1688) : 477–495.

Dixon, P. A., M. Milicich, and G. Sugihara, 1999. Episodic fluctuations in larval supply. Science 283:1528–1530.

Sugihara G., May R., Ye H., Hsieh C., Deyle E., Fogarty M., Munch S., 2012. Detecting Causality in Complex Ecosystems. Science 338:496-500.

Ye H., and G. Sugihara, 2016. Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science 353:922–925.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyEDM-1.15.1.0-cp311-cp311-win_amd64.whl (765.7 kB view details)

Uploaded CPython 3.11Windows x86-64

pyEDM-1.15.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyEDM-1.15.1.0-cp311-cp311-macosx_10_9_universal2.whl (751.6 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

pyEDM-1.15.1.0-cp310-cp310-win_amd64.whl (765.4 kB view details)

Uploaded CPython 3.10Windows x86-64

pyEDM-1.15.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyEDM-1.15.1.0-cp310-cp310-macosx_11_0_x86_64.whl (429.3 kB view details)

Uploaded CPython 3.10macOS 11.0+ x86-64

pyEDM-1.15.1.0-cp39-cp39-win_amd64.whl (686.0 kB view details)

Uploaded CPython 3.9Windows x86-64

pyEDM-1.15.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyEDM-1.15.1.0-cp39-cp39-macosx_11_0_x86_64.whl (429.5 kB view details)

Uploaded CPython 3.9macOS 11.0+ x86-64

pyEDM-1.15.1.0-cp38-cp38-win_amd64.whl (764.7 kB view details)

Uploaded CPython 3.8Windows x86-64

pyEDM-1.15.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pyEDM-1.15.1.0-cp38-cp38-macosx_11_0_x86_64.whl (429.3 kB view details)

Uploaded CPython 3.8macOS 11.0+ x86-64

File details

Details for the file pyEDM-1.15.1.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyEDM-1.15.1.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 765.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pyEDM-1.15.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5a974127810b0ace3590b0ee4654e8c85f0b286b14d83ab99661a3075929b6f5
MD5 d52672804298895f0e9fbab48cb16f8a
BLAKE2b-256 9b5f40d101c313da90a3fb87f5f3e4b469f3b511c9d2c9dc7f634f204ce397ac

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDM-1.15.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b356cc5926cec0d1f4469e55a98592d8b713227590c5a983c3c8610319e8747a
MD5 7017c5c0b3ed57f01fa6f9927e034c5b
BLAKE2b-256 deb6fab75365f1db822945a823ac83d98fdcfae9349c9964a02e679a2d091f11

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyEDM-1.15.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 13dd158c430b56bcb33a25d490687e7137e2d6d450b2aca80e2066d4ec1dc2f2
MD5 131ace9c122ac938e84de3db59bc22eb
BLAKE2b-256 422b3bc6e82d8cee86f13877f8ffdacb82598162a5509a3b5d6a6bd1bdd11f8d

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyEDM-1.15.1.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 765.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pyEDM-1.15.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b3f0a2f73b87e830375a6defb1c7e2e980474e13ea03619f944eaa3e35199487
MD5 b3b279179029f9c2bfc3187823136325
BLAKE2b-256 cfb7277c7e56657e61265d3577e03ae32de4f63370430c0fe87b1cf42a1db96b

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDM-1.15.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2af205f8eb6fe62d7b0d139dc5e536685beda216dd29ab2b641fe913a779959c
MD5 6bf3a5064c30b628b7e91f0457d53cb3
BLAKE2b-256 da1bcfd78d603440e322ff38513e2299afa5a0b543be72fb8a81181ab9846e78

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyEDM-1.15.1.0-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 49c0003445fe5f0dd499549c4567e3ad1ffd4dcb33dcedc12ced628978e1bf6a
MD5 8778737c3b8ee7e14a37499acbb8d5a2
BLAKE2b-256 2705a09695617920dbd81b6bc226f6393bf2e929d4ca5702c7844695284c52fd

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyEDM-1.15.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 686.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pyEDM-1.15.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7b1a60adbb3743dee35d6569ae041299cc1e4ed049ba3f1aa46ad8f7a2497566
MD5 c39289484fad92b94bf62eb790ebc602
BLAKE2b-256 38bed94a685db90d3e0980ee7d7c4918a721ca4a45dda6ccf7c4c80f3105020b

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDM-1.15.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c1e3002fc7197225dc31dee054d6052d02d8f2bcb697abc756e6251623969fdf
MD5 aad9398aa4d0ac446f1517e6a7a3a6ab
BLAKE2b-256 d9380e8005bacbd05321f2b3e4e4144f8950a1ccabec2bd599bcff09551f1048

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyEDM-1.15.1.0-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 b2bffa509262aa0e13f0bcde17b6b90b94dff663fc118ff917d7f5a94f693455
MD5 80cd1218f0f519ef5cb8c71fdf6ee9ca
BLAKE2b-256 6e5b7daa70863c3ea2b18dce683b4a23520ea3a08c382fdbca3c02fce4b62893

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyEDM-1.15.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 764.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.6

File hashes

Hashes for pyEDM-1.15.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4828f96f4d5622fa25f084218afa6312b655875653759aff6e706fd2cb03b60b
MD5 260ef1364b23dc53131b6cef368e0025
BLAKE2b-256 d686253a1d5af4f48e63e65c6b2b9713b6a4bee0b42b94fb170df63b930a4e64

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyEDM-1.15.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f093ee2fb1c9b0831639231d6940406934e96376b9cc97b64819fe4013374518
MD5 8a6c3472d67d49c5ddacb71bb1ae1be3
BLAKE2b-256 484e7b59b2f4db366456dff3bd59058d64fc8fd3a0094297d894e38d495e5a84

See more details on using hashes here.

File details

Details for the file pyEDM-1.15.1.0-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for pyEDM-1.15.1.0-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 60705ff26d47eb0f1e7299ec2e65951eb5bfa891b0decb3f3e90e0f8eb840c29
MD5 d4d41fb9212197801445e5f38916b5b3
BLAKE2b-256 959625cbedf45daad3bc3e36634b8cf3ff53b19a7b44b0f47bbe7439bfa8dbc2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page