Empirical Orthogonal Function (EOF) analysis and Rotated EOF analysis in Python
Project description
pyEOF is a Python package for EOF and Rotated EOF Analysis . It takes advantage of
sklearn.decomposition.PCA (for EOF)
Advanced Priniciple Component Analysis (for varimax rotation // varimax rotated EOF // REOF)
Installation
Step 1: create an environment:
$ conda create -n pyEOF python=3.7 $ conda activate pyEOF $ conda install -c conda-forge numpy pandas scipy scikit-learn rpy2
Step 2: install using pip:
$ pip install pyEOF
(optional) for jupyter notebook tutorial:
$ conda install -c conda-forge numpy pandas scipy scikit-learn rpy2 xarray matplotlib jupyter eofs
(optional) install from source:
$ git clone https://github.com/zzheng93/pyEOF.git $ cd pyEOF $ python setup.py install
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyEOF-0.0.0.tar.gz
(9.1 kB
view details)
File details
Details for the file pyEOF-0.0.0.tar.gz.
File metadata
- Download URL: pyEOF-0.0.0.tar.gz
- Upload date:
- Size: 9.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.6.1 requests/2.25.0 setuptools/51.0.0.post20201207 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.7.4
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
ec9afd1ccaa45fb99ef247feefc37d9e161c80c43c860bef506d565ec72e44f3
|
|
| MD5 |
5c411e0c9ec125121b80a7d10161ebcf
|
|
| BLAKE2b-256 |
d1fea5f7106920d86b3fab35b6ab0eb9df5e19e58f3a2a1bd65776eb17cc2b72
|