Skip to main content

Python implementation of fast azimuthal integration

Project description

Main development website: https://github.com/silx-kit/pyFAI

Github Actions Appveyor Status myBinder Launcher Zenodo DOI RTD docs

PyFAI is an azimuthal integration library that tries to be fast (as fast as C and even more using OpenCL and GPU). It is based on histogramming of the 2theta/Q positions of each (center of) pixel weighted by the intensity of each pixel, but parallel version uses a SparseMatrix-DenseVector multiplication. Neighboring output bins get also a contribution of pixels next to the border thanks to pixel splitting. Finally pyFAI provides also tools to calibrate the experimental setup using Debye-Scherrer rings of a reference compound.

References

Installation

With PIP

As most Python packages, pyFAI is available via PIP:

pip install pyFAI[gui]

It is advised to run this in a vitural environment . Provide the –user option to perform an installation local to your user-space (not recommended). Under UNIX, you may have to run the command via sudo to gain root access and perform a system wide installation (which is neither recommended).

With conda

pyFAI is also available via conda:

conda install pyfai -c conda-forge

To install conda please see either conda or Anaconda.

From source code

The current development version of pyFAI can be downloaded from Github. Presently the source code has been distributed as a zip package. Download it one and unpack it:

unzip pyFAI-main.zip

All files are unpacked into the directory pyFAI-main:

cd pyFAI-main

Install dependencies:

pip install -r requirements.txt

Build it & test it:

python3 run_tests.py

For its tests, pyFAI downloads test images from the internet. Depending on your network connection and your local network configuration, you may have to setup a proxy configuration like this (not needed at ESRF):

export http_proxy=http://proxy.site.org:3128

Finally, install pyFAI in the virtualenv after testing it:

pip install .

The newest development version can also be obtained by checking out from the git repository:

git clone https://github.com/silx-kit/pyFAI.git
cd pyFAI
pip install .

If you want pyFAI to make use of your graphic card, please install pyopencl

Documentation

Documentation can be build using this command and Sphinx (installed on your computer):

python3 build-doc.py

Dependencies

Python 3.10, … 3.14 are well tested and officially supported (thread-free is untested). For full functionality of pyFAI the following modules need to be installed.

Those dependencies can simply be installed by:

pip install -r requirements.txt

Ubuntu and Debian-like Linux distributions

To use pyFAI on Ubuntu/Debian the needed python modules can be installed either through the Synaptic Package Manager (found in System -> Administration) or using apt-get on from the command line in a terminal:

sudo apt-get install pyfai

The extra Ubuntu packages needed are:

  • python3-numpy

  • python3-scipy

  • python3-matplotlib

  • python3-dev

  • python3-fabio

  • python3-pyopencl

  • python3-qtpy

  • python3-silx

  • python3-numexpr

using apt-get these can be installed as:

sudo apt-get build-dep pyfai

MacOSX

One needs to manually install a recent version of Python (>=3.10) prior to installing pyFAI. Apple provides only an outdated version of Python 2.7 which is now incomatible. If you want to build pyFAI from sources, you will also need Xcode which is available from the Apple store. The compiled extension will use only one core due to the limitation of the compiler. OpenCL is hence greately adviced on Apple systems. Then install the missing dependencies with pip:

pip install -r requirements.txt

Windows

Under Windows, one needs to install Python (>=3.10) prior to pyFAI. The Visual Studio C++ compiler is also needed when building from sources. Then install the missing dependencies with pip:

pip install  -r requirements.txt

Getting help

A mailing-list, pyfai@esrf.fr, is available to get help on the program and how to use it. One needs to subscribe by sending an email to sympa@esrf.fr with a subject “subscribe pyfai”.

Maintainers

  • Jérôme Kieffer (ESRF)

  • Edgar Gutierrez Fernandez (ESRF)

  • Loïc Huder (ESRF)

Contributors

  • Valentin Valls (ESRF)

  • Gudrun Lotze

  • Frédéric-Emmanuel Picca (Soleil)

  • Thomas Vincent (ESRF)

  • Dimitris Karkoulis (Formerly ESRF)

  • Aurore Deschildre (Formerly ESRF)

  • Giannis Ashiotis (Formerly ESRF)

  • Zubair Nawaz (Formerly Sesame)

  • Jon Wright (ESRF)

  • Amund Hov (Formerly ESRF)

  • Dodogerstlin @github

  • Gunthard Benecke (Desy)

  • Gero Flucke (Desy)

  • Maciej Jankowski (ESRF)

  • Gudrun Lotze

Indirect contributors (ideas…)

  • Peter Boesecke

  • Manuel Sánchez del Río

  • Vicente Armando Solé

  • Brian Pauw

  • Veijo Honkimaki

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfai-2025.12.1.tar.gz (68.4 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pyfai-2025.12.1-cp314-cp314t-win_amd64.whl (6.0 MB view details)

Uploaded CPython 3.14tWindows x86-64

pyfai-2025.12.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyfai-2025.12.1-cp314-cp314-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.14Windows x86-64

pyfai-2025.12.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyfai-2025.12.1-cp314-cp314-macosx_11_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

pyfai-2025.12.1-cp313-cp313-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.13Windows x86-64

pyfai-2025.12.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyfai-2025.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ppc64le

pyfai-2025.12.1-cp313-cp313-macosx_11_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pyfai-2025.12.1-cp313-cp313-macosx_10_13_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

pyfai-2025.12.1-cp312-cp312-win_amd64.whl (5.3 MB view details)

Uploaded CPython 3.12Windows x86-64

pyfai-2025.12.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyfai-2025.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (6.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ppc64le

pyfai-2025.12.1-cp312-cp312-macosx_11_0_arm64.whl (5.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pyfai-2025.12.1-cp312-cp312-macosx_10_13_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pyfai-2025.12.1-cp311-cp311-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.11Windows x86-64

pyfai-2025.12.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyfai-2025.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ppc64le

pyfai-2025.12.1-cp311-cp311-macosx_11_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pyfai-2025.12.1-cp311-cp311-macosx_10_9_x86_64.whl (5.8 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pyfai-2025.12.1-cp310-cp310-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.10Windows x86-64

pyfai-2025.12.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.24+ x86-64manylinux: glibc 2.28+ x86-64

pyfai-2025.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (7.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ppc64le

pyfai-2025.12.1-cp310-cp310-macosx_11_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pyfai-2025.12.1-cp310-cp310-macosx_10_9_x86_64.whl (5.9 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file pyfai-2025.12.1.tar.gz.

File metadata

  • Download URL: pyfai-2025.12.1.tar.gz
  • Upload date:
  • Size: 68.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for pyfai-2025.12.1.tar.gz
Algorithm Hash digest
SHA256 88b5a7334af419de7ffba40c772896e85bd51dc1f05c099eb52c30f1d7752a2e
MD5 19d733e65d3a21be0364128e3ce090ec
BLAKE2b-256 1f8b25a4b3ec765ac65162d3c10c93850f245f536d11d2fd4a5c676999e7b564

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: pyfai-2025.12.1-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for pyfai-2025.12.1-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 e66858246ff5e55334a55925c3491e602e88cafc28d2abf24f4685d45faee36b
MD5 ed4c75b82aa97b6ed960cd5eb8e132dd
BLAKE2b-256 ecea5085e6563a20e24addc4e2016873815a1c361302fe2b68c7dc64b8172947

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp314-cp314t-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bc7919c31aa87de4b2706f4faaebc1e61b1558ce3717a2173df2c9ef93ca2dc9
MD5 f165ec8369b598f433016bd04ba77b28
BLAKE2b-256 b838f49e3a6a72f7ef619e1d051f179e6c4082b55a23583b92d97fb6c825ecfa

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: pyfai-2025.12.1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for pyfai-2025.12.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 928d881adba2376c2bebade8dcbb87a49ded9b2242616d3c9d1aeae7d018e0a7
MD5 6a79f92c9668f6da278cce0b7c2f94d2
BLAKE2b-256 284f1d7577ecfad3ff2258cbc1793ab9e1bb0a81c7c9c8e1e335f06a2fa49057

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ab297f55e9d7ab6d2bedcfd8b24e10d4074a2b7bcf92702c93bdf8b6fa24266f
MD5 46a4e950b0f082240d4c13a275856fea
BLAKE2b-256 7b06b4e915f035c4f3d23f1f1c12b374a7e55224147db5b1c3bfcd91af3ddbec

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e4c333dd344699d7da7c74b1ae7d9c135a15f306f76e50a53b011e036b7103be
MD5 627f6b92ca901cdca104708d55b74056
BLAKE2b-256 4ad9793533c5a231e9392e3ee32e471080d3100e7ebda448a0e3d630129eef33

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyfai-2025.12.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for pyfai-2025.12.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 905bafbbc763b41e306b756ae97d7e353e64ff0665737fc6c6f4a818090cbba8
MD5 a7c47ba01eb255c9f41d54657aa26b79
BLAKE2b-256 b9390a823de16e5620ee3d605635ef6ab89ce8531a52f386fe735c0f2d0aa3ab

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5bb1167aafbd20e03c252d99b51743f1c1eec6da7d980a6b3fc0d255b109b824
MD5 1773fca4b30ddb99e251814fc9cbb075
BLAKE2b-256 015caf3f4236c85fd3fbc219ed1401997eb9659586076086ba3e796c0da55ea0

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8138dace04ac8ac5dc04a9d279970a528935dba18a16f99c26e3a8fd218ba8a4
MD5 69e63383cf7045d5534b1ec006156af8
BLAKE2b-256 23a67bbc8ddd8c93a62b9eeb16797aa887e2814de4370aba7939d180d3a51cb6

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a5a5c59ae25832998ab4fbf2cd1f583c5843f8c5940da300a4d65d715efa457b
MD5 fb4e5e1eee0cc9e76988b9911fc96eaa
BLAKE2b-256 1090e9bfa09405caebd5b4e7b817ad1170955dd887520880a64ef19c302e4cbb

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3f0676be03e85bb4adffd872dc0b3565fdc425a034081acf0ef3f4178b3d1367
MD5 424941c1d999faf699195eab125d04a1
BLAKE2b-256 f77d292cf095a8a6b5109ff31cf1130f70b42bc77cf7bd35fbf7440d91b36279

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyfai-2025.12.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for pyfai-2025.12.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4a032f01dbbd0bbbdfe4bf3e24c8b50452dcc0bb5eddd16dcbacb3916d9e886d
MD5 44a48f91c27ef1ba21095775af9c5c1e
BLAKE2b-256 b428e0e425f74bd06bce57c0e58f69dbbb31b74441228eae9223525817d66131

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1f582e5606a121a0d1f8102f7c0212648d84b99e76348b6999698c613d0b2a31
MD5 8165cb700c7cf078b0992f54549de0d8
BLAKE2b-256 0458d830542956a6bfb24d3e7964bee06ebc17871255f1f50a7b4070a57b7f60

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c0e102a9c6fe54862c9d56b2016e210433ab4629495381309b70c8ae62cd018a
MD5 fe281804a04af9df3608a13b354d81d1
BLAKE2b-256 51913c51be7b1ec6412b08e3b621759702303b6a61d57fb77bb71e061ca98cd4

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce6a2268e556e790b51fe5baa4a23d5c2e213f0b5324dc641ff1626e3a6f7cf9
MD5 8aa7376f3c582fae301a00b6174bf6c1
BLAKE2b-256 a9a51a1ac47f858e1961d1f6ac1311c12e4449adf9e9a2142a60bf2846e30e68

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 403faa1250d9130fde290b84d7a2cc9d35bcdabf779e201cadf912b7e9f85397
MD5 2af729178d8280277ef91e43b60d37d7
BLAKE2b-256 4a3465f7f8afee39e5fe7c736cd404573cb27981c3f468245948748223121b84

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyfai-2025.12.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for pyfai-2025.12.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 932fc7fa6e59aef90d85a7f3bd9f0a08af732c69394fca6947c5c5f07dea4976
MD5 3bb627a09734eb5eb51265df4499b7c5
BLAKE2b-256 e04147146f56af9b419ddf8dcdc284a9e5cc8afaf9db9bcb05fae64881e99e7a

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp311-cp311-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 29b3dd7fc283faa5de98ef53f542646b05f4f47bf3d12174643e7f28204bdbe1
MD5 1f0a1991284e93e36f2eb5a95dda27ab
BLAKE2b-256 6f4a0c328e0e920441f3ecfce0463bb3ac0d3682d1637a45eba57bb6d913bd29

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1c23fd9c2b70c6192f9d8cc04dc05ba6d0eebae364091e0bc9f4a4b85de84b20
MD5 845fe8bc93c75d7dbe4b67d2f217e758
BLAKE2b-256 c1b10d1d952fdd59d82a14e322ce2e5b9565f357190f05aadbdf4036b08fa4d8

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d2d178fc30022a708065dfa4a2a4f3ee81d61f401137d8c4c697f7c65abab91b
MD5 81a4ba6c3ecba363fe6dd3d116cbb89d
BLAKE2b-256 2e513b8edef0dd33835e783dcc1850dc7a83c39ce68b9d374e35d22f00f72890

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 115b7c5b3dc4c3a618199d78e4d2589931839452fcadc24fdbf09afe4fae5d9f
MD5 b0116880ae7e7ffbe130c3e11f430a72
BLAKE2b-256 fd9287fd57c44a987ae7a5e04dccb0b96da05d0ef31623bb7ca87297a4c76b7b

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyfai-2025.12.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.13.5

File hashes

Hashes for pyfai-2025.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 721d2ba295af1b14538147049f3f9d85a5cc5cc0b01efe208460102980a2754b
MD5 01508b38df57842c75febb4541753cfe
BLAKE2b-256 f4d0a6b5f4ea1fa7272ad4b5b0914779f8202721bdada9cf0f403dd80e489968

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp310-cp310-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1f782203beec84230a5f04064749250ab690f5940a9294d439e3145143e684d9
MD5 4a9004ab5cfdc432899b424ce6fbd37e
BLAKE2b-256 0702176981553147d634dbecbe1de1e242f78920c7a81ee6334e27332624759e

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3ab276ed131bbc17ecef09489d957873c87b44d6188deee57e8d5ab932a7c1d2
MD5 d53fa56c1c308ccd46c98ed4eb7f06ce
BLAKE2b-256 f0b00184f670bc24febd6973e71b417d929357cbdd3bb3c2dbea2e71d27de9d9

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9ea5d987a954f32e97db4acf25526cb965cd388debbaa482f66b835a60b154d3
MD5 aea4eca7157e947952f90b2547a2d733
BLAKE2b-256 12ed4666bc8e2712d96ede99782d198feb9853ee4b024faf7c3d955999269e5b

See more details on using hashes here.

File details

Details for the file pyfai-2025.12.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfai-2025.12.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 411f20912905144c384c2febd6f5bf14ea0ae4fb1a32c4f6fff22177cbdbaaa7
MD5 c754a611ed731a497728d488b7e534ef
BLAKE2b-256 b2fd24d84fa556d5b49be85a5e4c4ff1d41657958a24773f76161c77a04ccdae

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page