Skip to main content

A Python package for fuzzy model estimation

Project description

pyFUME

pyFUME is a Python package for automatic Fuzzy Models Estimation from data [1]. pyFUME contains functions to estimate the antecedent sets and the consequent parameters of a Takagi-Sugeno fuzzy model directly from data. This information is then used to create an executable fuzzy model using the Simpful library. pyFUME also provides facilities for the evaluation of performance. For more information about pyFUME's functionalities, please check the online documentation.

Usage

For the following example, we use the Concrete Compressive Strength data set [2] as can be found in the UCI repository. The code in Example 1 is simple and easy to use, making it ideal to use for practitioners who wish to use the default settings or only wish to use few non-default settings using additional input arguments (Example 2). Users that wish to deviate from the default settings can use the code as shown in Example 3. The code of the Simpful model that is generated is automatically saved (in the same location as the pyFUME script is ran from) under the name 'Simpful_code.py'

Note

Please be aware that pyFUME's feature selection functionality makes use of multiprocessing. When feature selection is used, the main script should always be guarded by including "if __name__ == '__main__':" in the header the script. When the Spyder IDE is used, one should include "if __name__ == '__main__' and '__file__' in globals():".

Example 1

from pyfume import pyFUME

# Set the path to the data and choose the number of clusters
path='./Concrete_data.csv'
nc=3

# Generate the Takagi-Sugeno FIS
FIS = pyFUME(datapath=path, nr_clus=nc)

# Calculate and print the accuracy of the generated model
MAE=FIS.calculate_error(method="MAE")
print ("The estimated error of the developed model is:", MAE)

## Use the FIS to predict the compressive strength of a new concrete sample
# Extract the model from the FIS object
model=FIS.get_model()

# Set the values for each variable
model.set_variable('Cement', 300.0)
model.set_variable('BlastFurnaceSlag', 50.0)
model.set_variable('FlyAsh', 0.0)
model.set_variable('Water', 175.0)
model.set_variable('Superplasticizer',0.7)
model.set_variable('CoarseAggregate', 900.0)
model.set_variable('FineAggregate', 600.0)
model.set_variable('Age', 45.0)

# Perform inference and print predicted value
print(model.Sugeno_inference(['OUTPUT']))

Example 2

from pyfume import pyFUME

# Set the path to the data and choose the number of clusters
path='./Concrete_data.csv'
nc=3

# Generate the Takagi-Sugeno FIS
FIS = pyFUME(datapath=path, nr_clus=nc, feature_selection='fst-pso')

# Calculate and print the accuracy of the generated model
MAE=FIS.calculate_error(method="MAE")
print ("The estimated error of the developed model is:", MAE)

## Use the FIS to predict the compressive strength of a new concrete sample
# Extract the model from the FIS object
model=FIS.get_model()

# Set the values for each variable
model.set_variable('Cement', 300.0)
model.set_variable('BlastFurnaceSlag', 50.0)
model.set_variable('FlyAsh', 0.0)
model.set_variable('Water', 175.0)
model.set_variable('Superplasticizer',0.7)
model.set_variable('CoarseAggregate', 900.0)
model.set_variable('FineAggregate', 600.0)
model.set_variable('Age', 45.0)

# Perform inference and print predicted value
print(model.Sugeno_inference(['OUTPUT']))

Example 3

from pyfume import *

# Set the path to the data and choose the number of clusters
path='./Concrete_data.csv'
nr_clus=3

# Load and normalize the data using min-max normalization
dl=DataLoader(path,normalize='minmax')
variable_names=dl.variable_names 
dataX=dl.dataX
dataY=dl.dataY

# Split the data using the hold-out method in a training (default: 75%) 
# and test set (default: 25%).
ds = DataSplitter()
x_train, y_train, x_test, y_test = ds.holdout(dataX=dl.dataX, dataY=dl.dataY)

# Select features relevant to the problem
fs=FeatureSelector(dataX=x_train, dataY=y_train, nr_clus=nr_clus, variable_names=variable_names)
selected_feature_indices, variable_names=fs.wrapper()

# Adapt the training and test input data after feature selection
x_train = x_train[:, selected_feature_indices]
x_test = x_test[:, selected_feature_indices]
      
# Cluster the training data (in input-output space) using FCM with default settings
cl = Clusterer(x_train=x_train, y_train=y_train, nr_clus=nr_clus)
cluster_centers, partition_matrix, _ = cl.cluster(method="fcm")
     
# Estimate the membership funtions of the system (default: mf_shape = gaussian)
ae = AntecedentEstimator(x_train=x_train, partition_matrix=partition_matrix)
antecedent_parameters = ae.determineMF()

# Calculate the firing strength of each rule for each data instance        
fsc=FireStrengthCalculator(antecedent_parameters=antecedent_parameters, nr_clus=nr_clus, variable_names=variable_names)
firing_strengths = fsc.calculate_fire_strength(data=x_train)

# Estimate the parameters of the consequent functions
ce = ConsequentEstimator(x_train=x_train, y_train=y_train, firing_strengths=firing_strengths)
consequent_parameters = ce.suglms()
        
# Build a first-order Takagi-Sugeno model using Simpful. Specify the optional 
# 'extreme_values' argument to specify the universe of discourse of the input
# variables if you which to use Simpful's membership function plot functionalities.
simpbuilder = SugenoFISBuilder(antecedent_sets=antecedent_parameters, consequent_parameters=consequent_parameters, variable_names=variable_names)
model = simpbuilder.get_model()

# Calculate the mean squared error (MSE) of the model using the test data set
test=SugenoFISTester(model=model, test_data=x_test, variable_names=variable_names, golden_standard=y_test)
MSE = test.calculate_MSE()

print('The mean squared error of the created model is', MSE)

Example 4

from pyfume import pyFUME
import pandas as pd
import numpy as np

# Read a Pandas dataframe (using the Pandas library)
df = pd.read_csv('.\Concrete_data.csv')

# Generate the Takagi-Sugeno FIS
FIS = pyFUME(dataframe=df, nr_clus=2)

# Calculate and print the accuracy of the generated model
MAE=FIS.calculate_error(method="MAE")
print ("The estimated error of the developed model is:", MAE)

### Use the FIS to predict the compressive strength of a new concrete samples

## Using Simpful's syntax (NOTE: This approach ONLY works for models built using non-normalized data!)   
# Extract the model from the FIS object
model=FIS.get_model()

# Set the values for each variable
model.set_variable('Cement', 300.0)
model.set_variable('BlastFurnaceSlag', 50.0)
model.set_variable('FlyAsh', 0.0)
model.set_variable('Water', 175.0)
model.set_variable('Superplasticizer',0.7)
model.set_variable('CoarseAggregate', 900.0)
model.set_variable('FineAggregate', 600.0)
model.set_variable('Age', 45.0)

# Perform inference and print predicted value
print('The output using Simpfuls "set_variable" functionality is:', model.Sugeno_inference(['OUTPUT']))

## Using pyFUME's syntax (NOTE: This approach DOES work for models built using normalized data!)
# Create numpy array (matrix) in which each row is a data instance to be processed
new_data_one_instance=np.array([[300, 50,0,175,0.7,900,600,45]]) 
prediction_labels_one_instance=FIS.predict_label(new_data_one_instance)
print('The output using pyFUMEs "predict_label" functionality is:', prediction_labels_one_instance)

# Example in which output for multiple data instances is computed
new_data_multiple_instances=np.array([[300, 50,0,175,0.7,900,600,45],[500, 75,30,200,0.9,600,760,39],[250, 40,10,175,0.3,840,360,51]]) 
prediction_labels_multiple_instance=FIS.predict_label(new_data_multiple_instances)
print('The output using pyFUMEs "predict_label" functionality is:', prediction_labels_multiple_instance)

### Plot the actual values vs the predicted values of the test data using the matplotlib library

# Predict the labels of the test data
pred = FIS.predict_test_data()

# Get the actual labels of the test data
_, actual = FIS.get_data(data_set='test')

# Create scatterplot
import matplotlib.pyplot as plt 
plt.scatter(actual, pred)
plt.xlabel('Actual value') 
plt.ylabel('Predicted value')
plt.plot([0,85],[0,85],'r')     # Add a reference line
plt.show()


Installation

pip install pyfume

Further information

If you need further information, please write an e-mail to Caro Fuchs: c.e.m.fuchs(at)tue.nl.

References

[1] Fuchs, C., Spolaor, S., Nobile, M. S., & Kaymak, U. (2020) "pyFUME: a Python package for fuzzy model estimation". In 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-8). IEEE.

[2] I-Cheng Yeh, "Modeling of strength of high performance concrete using artificial neural networks," Cement and Concrete Research, Vol. 28, No. 12, pp. 1797-1808 (1998). http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyFUME-0.3.1.tar.gz (52.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pyFUME-0.3.1-py3-none-any.whl (59.6 kB view details)

Uploaded Python 3

File details

Details for the file pyFUME-0.3.1.tar.gz.

File metadata

  • Download URL: pyFUME-0.3.1.tar.gz
  • Upload date:
  • Size: 52.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyFUME-0.3.1.tar.gz
Algorithm Hash digest
SHA256 f09f6a85269395bfca8828de82673c89a19a64e5c9d0f93512ab8e4c4514b56d
MD5 87b6cab86935740a94b7f2934cdd9ebb
BLAKE2b-256 b866985d6230ca113b23a678cf37ce85bce04fd75e19a6669d30c9d41c3e76fd

See more details on using hashes here.

File details

Details for the file pyFUME-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: pyFUME-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 59.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pyFUME-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ff69627e7551cc734a153e1083f68ec273e8c6e1d8953da2b7cae575420a7e64
MD5 5ab00e180c214d2569ae63852a5e200b
BLAKE2b-256 f0feb899a3d9a18c9a44a35155c79a4c152cb85990ea38ce6ab7ed73e5caa1b9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page