This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
================================================================================
Marion Neumann [m dot neumann at wustl dot edu]
Daniel Marthaler [dan dot marthaler at gmail dot com]
Shan Huang [schan dot huang at gmail dot com]
Kristian Kersting [kristian dot kersting at cs dot tu-dortmund dot de]

This file is part of pyGPs.
The software package is released under the BSD 2-Clause (FreeBSD) License.

Copyright (c) by
Marion Neumann, Daniel Marthaler, Shan Huang & Kristian Kersting, 18/02/2014
================================================================================

pyGPs is a library containing code for Gaussian Process (GP) Regression and Classification.

Here is the online documentation: [ONLINE documentation](http://www-ai.cs.uni-dortmund.de/weblab/static/api_docs/pyGPs/)

pyGPs is an object-oriented implementation of GPs. Its functionality follows roughly the gpml matlab implementation by Carl Edward Rasmussen and Hannes Nickisch (Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-01-21).

Standard GP regression and (binary) classification as well as FITC (sparse GPs) inference is implemented.
For a list of implemented covariance, mean, likelihood, and inference functions see list_of_functions.txt.
The current implementation is optimized and tested, however, the work on this library is still in progress. We appreciate any feedback.

A comprehensive introduction to functionalities and demonstrations can be found in the *doc* folder; just open /doc/build/html/index.html in your browser to get to the html documentation of the whole package.

Further, pyGPs includes implementations of
- minimize.py implemented in python by Roland Memisevic 2008, following minimize.m which is copyright (C) 1999 - 2006, Carl Edward Rasmussen
- scg.py (Copyright (c) Ian T Nabney (1996-2001))
- brentmin.py (Copyright (c) by Hannes Nickisch 2010-01-10.)


Installing pyGPs
------------------
Download the archive and extract it to any local directory.

You can either add the local directory to your PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:/path/to/local/directory/../parent_folder_of_pyGPs

or install the package using setup.py:

python setup.py install

or install via pip::

pip install pyGPs

Requirements
--------------
- python 2.6 or 2.7 or *NEW:* python 3
- scipy (v0.13.0 or later), numpy, and matplotlib: open-source packages for scientific computing using the Python programming language.


Acknowledgements
--------------
The following persons helped to improve this software: Roman Garnett, Maciej Kurek, Hannes Nickisch, Zhao Xu, and Alejandro Molina.

This work is partly supported by the Fraunhofer ATTRACT fellowship STREAM.
Release History

Release History

1.3.3

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.3.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.3.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pyGPs-1.3.3.tar.gz (10.3 MB) Copy SHA256 Checksum SHA256 Source Sep 12, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting