Skip to main content

Python library for Apache Arrow

Project description

Python library for Apache Arrow

pypi conda-forge

This library provides a Python API for functionality provided by the Arrow C++ libraries, along with tools for Arrow integration and interoperability with pandas, NumPy, and other software in the Python ecosystem.

Installing

Across platforms, you can install a recent version of pyarrow with the conda package manager:

conda install pyarrow -c conda-forge

On Linux, macOS, and Windows, you can also install binary wheels from PyPI with pip:

pip install pyarrow

If you encounter any issues importing the pip wheels on Windows, you may need to install the Visual C++ Redistributable for Visual Studio 2015.

Development

See Python Development in the documentation subproject.

Building the documentation

See documentation build instructions in the documentation subproject.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyarrow-10.0.1.tar.gz (994.1 kB view details)

Uploaded Source

Built Distributions

pyarrow-10.0.1-cp311-cp311-win_amd64.whl (20.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyarrow-10.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyarrow-10.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyarrow-10.0.1-cp311-cp311-macosx_11_0_arm64.whl (22.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyarrow-10.0.1-cp311-cp311-macosx_10_14_x86_64.whl (25.0 MB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

pyarrow-10.0.1-cp310-cp310-win_amd64.whl (20.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyarrow-10.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyarrow-10.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyarrow-10.0.1-cp310-cp310-macosx_11_0_arm64.whl (23.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyarrow-10.0.1-cp310-cp310-macosx_10_14_x86_64.whl (25.0 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

pyarrow-10.0.1-cp39-cp39-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyarrow-10.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyarrow-10.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyarrow-10.0.1-cp39-cp39-macosx_11_0_arm64.whl (23.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyarrow-10.0.1-cp39-cp39-macosx_10_14_x86_64.whl (25.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

pyarrow-10.0.1-cp38-cp38-win_amd64.whl (20.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyarrow-10.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyarrow-10.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pyarrow-10.0.1-cp38-cp38-macosx_11_0_arm64.whl (23.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyarrow-10.0.1-cp38-cp38-macosx_10_14_x86_64.whl (25.0 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

pyarrow-10.0.1-cp37-cp37m-win_amd64.whl (20.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (36.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (33.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pyarrow-10.0.1-cp37-cp37m-macosx_10_14_x86_64.whl (25.0 MB view details)

Uploaded CPython 3.7m macOS 10.14+ x86-64

File details

Details for the file pyarrow-10.0.1.tar.gz.

File metadata

  • Download URL: pyarrow-10.0.1.tar.gz
  • Upload date:
  • Size: 994.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pyarrow-10.0.1.tar.gz
Algorithm Hash digest
SHA256 1a14f57a5f472ce8234f2964cd5184cccaa8df7e04568c64edc33b23eb285dd5
MD5 ac156e3887abb1179d47da13001d193c
BLAKE2b-256 1171dd884e86aa92b2d602ee2064a485106ce5b447f8cae644f1a6f6a2e72016

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyarrow-10.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 20.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pyarrow-10.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1765a18205eb1e02ccdedb66049b0ec148c2a0cb52ed1fb3aac322dfc086a6ee
MD5 c28e7aa057163ed47764948e172ff723
BLAKE2b-256 90699e0ea39bed0d281e84cc3cd4a693ebc86266b705d910af9cc939e66c5d03

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abb57334f2c57979a49b7be2792c31c23430ca02d24becd0b511cbe7b6b08649
MD5 a893316fd6b7263265dea6329d024bf4
BLAKE2b-256 8153385279a985567a8a909bf9365cd15fc87c26ebe7db60a7220e4eeb407c87

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 70acca1ece4322705652f48db65145b5028f2c01c7e426c5d16a30ba5d739c24
MD5 22921ac2f57742359d420dbcb58df40a
BLAKE2b-256 ef87a0849cd20c75dd832683fdad0b321e6428281f3f3053e01c588269ae5b89

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 254017ca43c45c5098b7f2a00e995e1f8346b0fb0be225f042838323bb55283c
MD5 c54271d889793daee07e129e8a7acac8
BLAKE2b-256 1e6e915b7dfb7cfd2efd092b9b4d6579cb5848ba1dced3543bdd963df59ee2b5

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e3fe5049d2e9ca661d8e43fab6ad5a4c571af12d20a57dffc392a014caebef65
MD5 826549099f1ad05570bdc1764d3ea066
BLAKE2b-256 f8fe4e2d2cd7e0d544018d7c7fee3dcee80303e16111605716592dd5333a2212

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyarrow-10.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 20.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pyarrow-10.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7b4ede715c004b6fc535de63ef79fa29740b4080639a5ff1ea9ca84e9282f349
MD5 1f95938d04adc36fc17e25ad147b54ea
BLAKE2b-256 3315b62e72b04f48de27cc97a874c0f466cda8731444e380b75c58272a9fc649

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba71e6fc348c92477586424566110d332f60d9a35cb85278f42e3473bc1373da
MD5 3e987ec5d81485edadf9483d546b4808
BLAKE2b-256 db9fef33d4f60089bbe32a5620e599cb485cfd9306bd1663bc603354759c28eb

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb627673cb98708ef00864e2e243f51ba7b4c1b9f07a1d821f98043eccd3f585
MD5 7ea39f5a20bc2edb6c0d89b32062bd58
BLAKE2b-256 fd3e9f538cc3e048ae2de171ae4bb326c5482ba2bd63978c56bd29110e65ba09

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f7a7dbe2f7f65ac1d0bd3163f756deb478a9e9afc2269557ed75b1b25ab3610
MD5 6922f1599de7ef0c8fb611aa5070c845
BLAKE2b-256 260262c918edc87e91bf07fd003f7ed8468d45130471b415754b27cf4db95896

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e00174764a8b4e9d8d5909b6d19ee0c217a6cf0232c5682e31fdfbd5a9f0ae52
MD5 5da2b0392e8f24dc36e09101c126d526
BLAKE2b-256 da8a9fa72ef41bd47816f11e6c3c5b68c0a913d2005a3e1aa327dfaa936debb9

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyarrow-10.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 20.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pyarrow-10.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0ec7587d759153f452d5263dbc8b1af318c4609b607be2bd5127dcda6708cdb1
MD5 6db2ceb442136e83846a75ce74cb7907
BLAKE2b-256 6b7ddfde28d33a2dd22c95529d361203b6dc0cbdf87d82988f7d03224de35fcf

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db0c5986bf0808927f49640582d2032a07aa49828f14e51f362075f03747d198
MD5 a0643dd7a8a8de80c9b1b57126cc6de4
BLAKE2b-256 b2d277f002c442ed75f0cd19b744e34894544d25fc34bbdc8efeb33bd52d8de0

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 94fb4a0c12a2ac1ed8e7e2aa52aade833772cf2d3de9dde685401b22cec30002
MD5 49a26b55f3cdc76b969abf5d3c9105cc
BLAKE2b-256 a44819c8b4892d2d574dfbefa7065600aa4d7d8e8b864f7be5f58105c3fc0448

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b069602eb1fc09f1adec0a7bdd7897f4d25575611dfa43543c8b8a75d99d6874
MD5 326992f6c9519f727d01d792aeb43aa6
BLAKE2b-256 b614208f66e1c2f213ffc053e3d37b10ba41d0580654501dcd620ad5d32d056e

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 42ba7c5347ce665338f2bc64685d74855900200dac81a972d49fe127e8132f75
MD5 c42b1ca2befa990dcb5b6b2b2550d08c
BLAKE2b-256 b9460050ff96706f27b766497d63ad60f8bace6a4e61565594bd8079b33e81af

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyarrow-10.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 20.3 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pyarrow-10.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d1bc6e4d5d6f69e0861d5d7f6cf4d061cf1069cb9d490040129877acf16d4c2a
MD5 a7dbbb5f8e2809fbc7d48bf43fa70f02
BLAKE2b-256 6dfa470b9d156eba452c67d681059f0876fb7bad74e387a37fe1d146aeac6bcd

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 668e00e3b19f183394388a687d29c443eb000fb3fe25599c9b4762a0afd37775
MD5 692bd67707eedd5bd9a4e0a326ae5b77
BLAKE2b-256 89b404ae9d39130d0dc40803eb6fbe84873c247f9c8e8111ac9b2cb30c35b515

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 efa59933b20183c1c13efc34bd91efc6b2997377c4c6ad9272da92d224e3beb1
MD5 a8873883e6e3d6b194399e3e1dd7b5da
BLAKE2b-256 6ad3cdaa61af13c323d33d2950126ecab641524174d71474a2b8450ab6f15ef6

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1fc226d28c7783b52a84d03a66573d5a22e63f8a24b841d5fc68caeed6784d4
MD5 df9131d3adc4ca70d7153c69b936e071
BLAKE2b-256 8537c66886e2b479018d1a5ed11c77913325f5482f60e5217c2f4182b15a5d25

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 f2d00aa481becf57098e85d99e34a25dba5a9ade2f44eb0b7d80c80f2984fc03
MD5 10bf05d1c94aaa3a30c77fbc3ca43ffd
BLAKE2b-256 61a7c6b4ce8fefda1a89083dc25bbd8da0200194779640e146b18abe742551d7

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyarrow-10.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 20.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for pyarrow-10.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 443eb9409b0cf78df10ced326490e1a300205a458fbeb0767b6b31ab3ebae6b2
MD5 407d37099d6bb0afb31557f3481a220e
BLAKE2b-256 7d75e799c76223b446b461a76420766ead8a2483e21272d4de9a5b5d260851ff

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf26f809926a9d74e02d76593026f0aaeac48a65b64f1bb17eed9964bfe7ae1a
MD5 2b4c7746c28ff9dbd3cfe2a3e1f2c00f
BLAKE2b-256 867a299b7b966be9c61e7337ddbff4e9e530093ef2ad935e52944b8ce19ba92f

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e141a65705ac98fa52a9113fe574fdaf87fe0316cde2dffe6b94841d3c61544c
MD5 427cb89a2c2667437a763b01f746c377
BLAKE2b-256 f39534b43f8b12f8366daba56ba46de354fd93e33b7535558d18173be2df60d2

See more details on using hashes here.

File details

Details for the file pyarrow-10.0.1-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for pyarrow-10.0.1-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 61f4c37d82fe00d855d0ab522c685262bdeafd3fbcb5fe596fe15025fbc7341b
MD5 5d490a267575ce58a8e703014fa33b54
BLAKE2b-256 12307e924599750474544ad2b01cf8d13edf80d8444a51b68c03761f6486d05e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page