Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Automate benchmark tables

Project Description

PyBenchmarks

Automate the creation of benchmark tables.

The benchmark utility times one or more code snippets or functions by iterating through input arguments or keyed variables. It returns a dictionary containing the elapsed time (all platforms) and memory usage (linux only) for each combination of the input variables. An argument or keyed variable is iterated if and only if it is a list, a tuple, a generator or a range.

Examples

>>> import numpy as np
>>> from pybenchmarks import benchmark
>>> b = benchmark((np.empty, np.ones), (100, 10000, 1000000),
...               dtype=(int, complex))
empty: 100     dtype=int       1.62 us
ones : 100     dtype=int       3.61 us
empty: 100     dtype=complex   1.70 us
ones : 100     dtype=complex   5.42 us
empty: 10000   dtype=int       1.53 us
ones : 10000   dtype=int       7.53 us
empty: 10000   dtype=complex   2.33 us
ones : 10000   dtype=complex  16.29 us
empty: 1000000 dtype=int       1.87 us
ones : 1000000 dtype=int       1.84 ms
empty: 1000000 dtype=complex   2.19 us
ones : 1000000 dtype=complex   4.20 ms
>>> b = benchmark(['np.empty(n, dtype=dtype)', 'np.ones(n, dtype=dtype)'],
...               dtype=(int, complex), n=(100, 10000, 1000000),
...               setup='from __main__ import np')
'np.empty(n, dt...: dtype=int     n=100       1.36 us
'np.ones(n, dty...: dtype=int     n=100       2.83 us
'np.empty(n, dt...: dtype=complex n=100       1.44 us
'np.ones(n, dty...: dtype=complex n=100       3.50 us
'np.empty(n, dt...: dtype=int     n=10000     1.22 us
'np.ones(n, dty...: dtype=int     n=10000     7.05 us
'np.empty(n, dt...: dtype=complex n=10000     1.35 us
'np.ones(n, dty...: dtype=complex n=10000    23.78 us
'np.empty(n, dt...: dtype=int     n=1000000   1.47 us
'np.ones(n, dty...: dtype=int     n=1000000   2.04 ms
'np.empty(n, dt...: dtype=complex n=1000000   2.91 us
'np.ones(n, dty...: dtype=complex n=1000000   4.26 ms
>>> import time
>>> benchmark(time.sleep, (1, 2, 3))
1   1.00 s
2   2.00 s
3   3.00 s
>>> shapes = (100, 10000, 1000000)
>>> setup = """
... import numpy as np
... a = np.random.random_sample(shape)
... """
>>> b = benchmark('np.dot(a, a)', shape=shapes, setup=setup)
shape=100       1.38 us
shape=10000     6.33 us
shape=1000000 855.44 us
>>> shapes = (10, 100, 1000)
>>> setup="""
... import numpy as np
... a = np.random.random_sample((m, n))
... b = np.random.random_sample(n)
... """
>>> b = benchmark('np.dot(a, b)', m=shapes, n=shapes, setup=setup)
m=10   n=10     1.08 us
m=100  n=10     1.61 us
m=1000 n=10     6.91 us
m=10   n=100    1.48 us
m=100  n=100    4.16 us
m=1000 n=100   20.69 us
m=10   n=1000   4.42 us
m=100  n=1000  39.23 us
m=1000 n=1000 931.04 us
>>> def f(x, n, start=1):
...     out = start
...     for i in range(n):
...         out *= x
...     return out
>>> b = benchmark(f, np.full(10, 2), xrange(10), start=2.)
0   1.09 us
1   4.15 us
2   5.25 us
3   5.53 us
4  13.10 us
5   9.23 us
6   9.69 us
7  10.46 us
8  13.03 us
9  10.77 us
Release History

Release History

This version
History Node

2.4

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pybenchmarks-2.4.tar.gz (5.6 kB) Copy SHA256 Checksum SHA256 Source Feb 26, 2015

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting