Skip to main content

Automate benchmark tables

Project description

PyBenchmarks

Automate the creation of benchmark tables.

The benchmark utility times one or more code snippets or functions by iterating through input arguments or keyed variables. It returns a dictionary containing the elapsed time (all platforms) and memory usage (linux only) for each combination of the input variables. An argument or keyed variable is iterated if and only if it is a list, a tuple, a generator or a range.

Examples

>>> import numpy as np
>>> from pybenchmarks import benchmark
>>> b = benchmark((np.empty, np.ones), (100, 10000, 1000000),
...               dtype=(int, complex))
empty: 100     dtype=int       1.62 us
ones : 100     dtype=int       3.61 us
empty: 100     dtype=complex   1.70 us
ones : 100     dtype=complex   5.42 us
empty: 10000   dtype=int       1.53 us
ones : 10000   dtype=int       7.53 us
empty: 10000   dtype=complex   2.33 us
ones : 10000   dtype=complex  16.29 us
empty: 1000000 dtype=int       1.87 us
ones : 1000000 dtype=int       1.84 ms
empty: 1000000 dtype=complex   2.19 us
ones : 1000000 dtype=complex   4.20 ms
>>> b = benchmark(['np.empty(n, dtype=dtype)', 'np.ones(n, dtype=dtype)'],
...               dtype=(int, complex), n=(100, 10000, 1000000),
...               setup='from __main__ import np')
'np.empty(n, dt...: dtype=int     n=100       1.36 us
'np.ones(n, dty...: dtype=int     n=100       2.83 us
'np.empty(n, dt...: dtype=complex n=100       1.44 us
'np.ones(n, dty...: dtype=complex n=100       3.50 us
'np.empty(n, dt...: dtype=int     n=10000     1.22 us
'np.ones(n, dty...: dtype=int     n=10000     7.05 us
'np.empty(n, dt...: dtype=complex n=10000     1.35 us
'np.ones(n, dty...: dtype=complex n=10000    23.78 us
'np.empty(n, dt...: dtype=int     n=1000000   1.47 us
'np.ones(n, dty...: dtype=int     n=1000000   2.04 ms
'np.empty(n, dt...: dtype=complex n=1000000   2.91 us
'np.ones(n, dty...: dtype=complex n=1000000   4.26 ms
>>> import time
>>> benchmark(time.sleep, (1, 2, 3))
1   1.00 s
2   2.00 s
3   3.00 s
>>> shapes = (100, 10000, 1000000)
>>> setup = """
... import numpy as np
... a = np.random.random_sample(shape)
... """
>>> b = benchmark('np.dot(a, a)', shape=shapes, setup=setup)
shape=100       1.38 us
shape=10000     6.33 us
shape=1000000 855.44 us
>>> shapes = (10, 100, 1000)
>>> setup="""
... import numpy as np
... a = np.random.random_sample((m, n))
... b = np.random.random_sample(n)
... """
>>> b = benchmark('np.dot(a, b)', m=shapes, n=shapes, setup=setup)
m=10   n=10     1.08 us
m=100  n=10     1.61 us
m=1000 n=10     6.91 us
m=10   n=100    1.48 us
m=100  n=100    4.16 us
m=1000 n=100   20.69 us
m=10   n=1000   4.42 us
m=100  n=1000  39.23 us
m=1000 n=1000 931.04 us
>>> def f(x, n, start=1):
...     out = start
...     for i in range(n):
...         out *= x
...     return out
>>> b = benchmark(f, np.full(10, 2), xrange(10), start=2.)
0   1.09 us
1   4.15 us
2   5.25 us
3   5.53 us
4  13.10 us
5   9.23 us
6   9.69 us
7  10.46 us
8  13.03 us
9  10.77 us

Project details


Release history Release notifications | RSS feed

This version

2.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pybenchmarks, version 2.4
Filename, size File type Python version Upload date Hashes
Filename, size pybenchmarks-2.4.tar.gz (5.6 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page