Skip to main content

Beta modal regression

Project description

Beta modal regression with measurement error

Import data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pybetareg as pyb

## Beta Modal Regression in Python.

df1 = pd.read_csv("data.csv")
df1.head()

##           Y      Wbar    SigmaW   Z1
## 0  0.186046 -2.289838  1.732051  0.0
## 1  0.391666 -0.535476  1.732051  0.0
## 2  0.883178  2.071954  1.732051  1.0
## 3  0.727209 -0.578447  1.732051  0.0
## 4  0.269854 -0.926259  1.732051  0.0

y = df1['Y'].to_numpy()
w = df1['Wbar'].to_numpy()
z = df1['Z1'].to_numpy()
z = np.column_stack([np.ones(z.shape[0]),z])
sigmaw = df1['SigmaW'].to_numpy()

Fit model

model2 = pyb.reg_measurement_error(y=y,w=w,z=z,
                                   sigmaw=sigmaw,
                                   initial=[10,1,1,1],
                                   CUDA = True,
                                   column_names = ['b1','b0','b2'])
model2fit = model2.fit()
model2fit.summary()

## -----------------------Model fitting completes------------------------
## Success:True
## Optimization terminated successfully.
## """
##                   Beta Modal Regression Results With                  
##                      Measurement Error Adjustment                     
## ======================================================================
##                 coef   std err         z     P>|z|    [0.025    0.975]
## ----------------------------------------------------------------------
## m            12.3424     3.791     3.256     0.001     4.913    19.772
## b1            0.9733     0.453     2.150     0.032     0.086     1.860
## b0            1.0646     0.436     2.444     0.015     0.211     1.918
## b2            0.9807     0.442     2.217     0.027     0.114     1.847
## ======================================================================
## """

Hotelling's T2 statistic and parametric bootstrap p-value.

Use hotelling_p(50) function to calculate Hotelling's T2 statistic and parametric bootstrap p-value across 50 iterations.

model2.hotelling_p(50)

## Hotelling's T^2 statistic and parametric bootstrap p-value.      
## ======================================================================
## Hotelling's T^2 statistic: 0.5063
## parametric bootstrap p-value: 0.7000
## ======================================================================

Beta modal regression without measurement error

Import data

df2 = pd.read_csv("data2.csv")
df2.head()

##           Y   X0        X1   X2
## 0  0.133439  1.0 -2.223525  0.0
## 1  0.315374  1.0 -1.415762  0.0
## 2  0.845555  1.0  1.218485  1.0
## 3  0.977328  1.0  1.690799  1.0
## 4  0.811748  1.0  0.076872  0.0

Fit model

x = df2[['X0','X1','X2']]
y = df2['Y']
model1 = pyb.reg(x=x, y=y, initial = [10,1,1,1])
model1fit = model1.fit()
model1fit.summary()

## Link function:logit
## Columns names are not given.
## Success:True
## Optimization terminated successfully.
## """
##                     Beta Modal Regression Results                     
## ======================================================================
##                 coef   std err         z     P>|z|    [0.025    0.975]
## ----------------------------------------------------------------------
## m            11.1426     1.253     8.891     0.000     8.686    13.599
## beta0         0.9453     0.113     8.373     0.000     0.724     1.167
## beta1         0.8837     0.084    10.571     0.000     0.720     1.048
## beta2         1.1198     0.182     6.158     0.000     0.763     1.476
## ======================================================================
"""

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pybetareg-1.0.0.tar.gz (7.9 kB view hashes)

Uploaded Source

Built Distribution

pybetareg-1.0.0-py3-none-any.whl (7.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page