Skip to main content

SQLAlchemy dialect for BigQuery

Project description

SQLAlchemy dialect and API client for BigQuery.

Usage

SQLAchemy

from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
engine = create_engine('bigquery://project')
table = Table('dataset.table', MetaData(bind=engine), autoload=True)
print(select([func.count('*')], from_obj=table).scalar())

API Client

from pybigquery.api import ApiClient
api_client = ApiClient()
print(api_client.dry_run_query(query=sqlstr).total_bytes_processed)

Project

project in bigquery://project is used to instantiate BigQuery client with the specific project ID. To infer project from the environment, use bigquery:// – without project

Authentication

Follow the Google Cloud library guide for authentication. Alternatively, you can provide the path to a service account JSON file in create_engine():

engine = create_engine('bigquery://', credentials_path='/path/to/keyfile.json')

Location

To specify location of your datasets pass location to create_engine():

engine = create_engine('bigquery://project', location="asia-northeast1")

Table names

To query tables from non-default projects, use the following format for the table name: project.dataset.table, e.g.:

sample_table = Table('bigquery-public-data.samples.natality')

Batch size

By default, arraysize is set to 5000. arraysize is used to set the batch size for fetching results. To change it, pass arraysize to create_engine():

engine = create_engine('bigquery://project', arraysize=1000)

Requirements

Install using

  • pip install pybigquery

Testing

Load sample tables:

./scripts/load_test_data.sh

This will create a dataset test_pybigquery with tables named sample_one_row and sample.

Set up an environment and run tests:

pyvenv .env
source .env/bin/activate
pip install -r dev_requirements.txt
pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pybigquery-0.4.4.tar.gz (9.3 kB view details)

Uploaded Source

File details

Details for the file pybigquery-0.4.4.tar.gz.

File metadata

  • Download URL: pybigquery-0.4.4.tar.gz
  • Upload date:
  • Size: 9.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for pybigquery-0.4.4.tar.gz
Algorithm Hash digest
SHA256 351b837c9cd1beab425b06e58d58cde03301c0478a6bd895cbdba33005bea6c9
MD5 3bf30e37f7118983f2d5cba6577aef80
BLAKE2b-256 532d39f7af1df232aa623938e79688f81be350435bdb37d74fe15fcc4d0753e7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page