Skip to main content

A simple python module to generate anchor boxes for object detection tasks.

Project description

PyBx

Installation

pip install pybx

Usage

To calculate the anchor boxes for a single feature size and aspect ratio, given the image size:

from pybx import anchor, ops

image_sz = (256, 256)
feature_sz = (10, 10)
asp_ratio = 1/2.

coords, labels = anchor.bx(image_sz, feature_sz, asp_ratio)

100 anchor boxes of asp_ratio 0.5 is generated along with unique labels:

len(coords), len(labels)
(100, 100)

The anchor box labels are especially useful, since they are pretty descriptive:

coords[-1], labels[-1]
([234, 225, 252, 256], 'a_10x10_0.5_99')

To calculate anchor boxes for multiple feature sizes and aspect ratios, we use anchor.bxs instead:

feature_szs = [(10, 10), (8, 8)]
asp_ratios = [1., 1/2., 2.]

coords, labels = anchor.bxs(image_sz, feature_szs, asp_ratios)

All anchor boxes are returned as ndarrays of shape (N,4) where N is the number of boxes.

The box labels are even more important now, since they help you uniquely identify to which feature map size or aspect ratios they belong to.

coords[101], labels[101]
(array([29,  0, 47, 30]), 'a_10x10_0.5_1')
coords[-1], labels[-1]
(array([217, 228, 256, 251]), 'a_8x8_2.0_63')

MultiBx methods

Box coordinates (with/without labels) in any format (usually ndarray, list, json, dict) can be instantialized as a MultiBx, exposing many useful methods and attributes of MultiBx. For example to calculate the area of each box iteratively:

from pybx.basics import * 
# passing anchor boxes and labels from anchor.bxs()
print(coords.shape)

boxes = mbx(coords, labels)
type(boxes)
(492, 4)

pybx.basics.MultiBx
len(boxes)
492
areas = [b.area for b in boxes]

Each annotation in the MultiBx object boxes is also a BaseBx with its own set of methods and properties.

boxes[-1]
BaseBx(coords=[[217, 228, 256, 251]], label=['a_8x8_2.0_63'])
boxes[-1].coords, boxes[-1].label
([[217, 228, 256, 251]], (#1) ['a_8x8_2.0_63'])

MultiBx objects can also be “added” which stacks them vertically to create a new MultiBx object:

boxes_true = mbx(coords_json)    # annotation as json records
len(boxes_true)
2
boxes_anchor = mbx(coords_numpy) # annotation as ndarray
len(boxes_anchor)
492
boxes_true
MultiBx(coords=[[130, 63, 225, 180], [13, 158, 90, 213]], label=['clock', 'frame'])
boxes = boxes_true + boxes_anchor + boxes_true
len(boxes)
496

Use ground truth boxes for model training

from pybx.anchor import get_gt_thresh_iou, get_gt_max_iou
from pybx.vis import VisBx
image_sz
(256, 256)
boxes_true
MultiBx(coords=[[130, 63, 225, 180], [13, 158, 90, 213]], label=['clock', 'frame'])

Calculate candidate anchor boxes for many aspect ratios and scales.

feature_szs = [(10, 10), (3, 3), (2, 2)]
asp_ratios = [0.3, 1/2., 2.]

anchors, labels = anchor.bxs(image_sz, feature_szs, asp_ratios)

Wrap using pybx methods. This step is not necessary but convenient.

boxes_anchor = get_bx(anchors, labels) 
len(boxes_anchor)
341

The following function returns two positive ground truth anchors with largest IOU for each class in the label bounding boxes passed.

gt_anchors, gt_ious, gt_masks = get_gt_max_iou( 
    true_annots=boxes_true, 
    anchor_boxes=boxes_anchor,  # if plain numpy, pass anchor_boxes and anchor_labels 
    update_labels=False,  # whether to replace ground truth labels with true labels
    positive_boxes=1,  # can request extra boxes 
)
gt_anchors
{'clock': BaseBx(coords=[[156, 0, 227, 180]], label=['a_2x2_0.3_1']),
 'frame': BaseBx(coords=[[12, 152, 72, 256]], label=['a_3x3_0.5_6'])}
all_gt_anchors = gt_anchors['clock'] + gt_anchors['frame']
all_gt_anchors
/mnt/data/projects/pybx/pybx/basics.py:464: BxViolation: Change of object type imminent if trying to add <class 'pybx.basics.BaseBx'>+<class 'pybx.basics.BaseBx'>. Use <class 'pybx.basics.BaseBx'>+<class 'pybx.basics.BaseBx'> instead or basics.stack_bxs().
  f"Change of object type imminent if trying to add "

MultiBx(coords=[[156, 0, 227, 180], [12, 152, 72, 256]], label=['a_2x2_0.3_1', 'a_3x3_0.5_6'])
v = VisBx(pth='../data/', img_fn='image.jpg', image_sz=image_sz)
v.show(all_gt_anchors, color={'a_2x2_0.3_1':'red', 'a_3x3_0.5_6': 'red'})
<AxesSubplot:>

More exploratory stuff in the walkthrough notebook or Open In Collab

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pybx-0.4.1.tar.gz (27.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pybx-0.4.1-py3-none-any.whl (30.1 kB view details)

Uploaded Python 3

File details

Details for the file pybx-0.4.1.tar.gz.

File metadata

  • Download URL: pybx-0.4.1.tar.gz
  • Upload date:
  • Size: 27.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pybx-0.4.1.tar.gz
Algorithm Hash digest
SHA256 74ccec67989b7511f970a8841c2ef79def3cc215b94fb227e13bc20e2f492b23
MD5 9aff85aff27e2f09ce3405e13b9a6ebe
BLAKE2b-256 0a3dca0f0a1a3c1ccbb09e06797da4593c971ad179aed916c98ef72a6753b33a

See more details on using hashes here.

File details

Details for the file pybx-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: pybx-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 30.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for pybx-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a02becc82a34fea236b8289e4cd55a28f3b4cbb3c84919d59e6a2adac01f2144
MD5 94f080933808cc4ea1855519f656f258
BLAKE2b-256 65d0ed9f6c0b21859fea2a22a6ccb026f2e10fc4f68560ccda7755ffdd78d352

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page