pycddlib is a Python wrapper for Komei Fukuda's cddlib.
Project description
cddlib is an implementation of the Double Description Method of Motzkin et al. for generating all vertices (i.e. extreme points) and extreme rays of a general convex polyhedron given by a system of linear inequalities.
The program also supports the reverse operation (i.e. convex hull computation). This means that one can move back and forth between an inequality representation and a generator (i.e. vertex and ray) representation of a polyhedron with cdd. Also, it can solve a linear programming problem, i.e. a problem of maximizing and minimizing a linear function over a polyhedron.
- Download: http://pypi.python.org/pypi/pycddlib/#downloads
- Documentation: http://pycddlib.readthedocs.org/
- Development: http://github.com/mcmtroffaes/pycddlib/
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size pycddlib-2.1.0-cp27-cp27m-win32.whl (216.0 kB) | File type Wheel | Python version cp27 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp27-cp27m-win_amd64.whl (274.4 kB) | File type Wheel | Python version cp27 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp34-cp34m-win32.whl (219.8 kB) | File type Wheel | Python version cp34 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp34-cp34m-win_amd64.whl (276.8 kB) | File type Wheel | Python version cp34 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp35-cp35m-win32.whl (203.2 kB) | File type Wheel | Python version cp35 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp35-cp35m-win_amd64.whl (257.9 kB) | File type Wheel | Python version cp35 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp36-cp36m-win32.whl (204.8 kB) | File type Wheel | Python version cp36 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp36-cp36m-win_amd64.whl (259.6 kB) | File type Wheel | Python version cp36 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp37-cp37m-win32.whl (204.8 kB) | File type Wheel | Python version cp37 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0-cp37-cp37m-win_amd64.whl (259.6 kB) | File type Wheel | Python version cp37 | Upload date | Hashes View hashes |
Filename, size pycddlib-2.1.0.tar.gz (168.7 kB) | File type Source | Python version None | Upload date | Hashes View hashes |
Hashes for pycddlib-2.1.0-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 393dcbd37550a7fa869034c1cfc63e28f9d029c9a57f8841601eaf570aebc6c8 |
|
MD5 | 00ec364302f750ac9905a9c2a7154c9c |
|
BLAKE2-256 | d22c57e3e1991cd822acfe18ff92f7cdcc90ee97bb33b7bdf6745e11a7d62f97 |
Hashes for pycddlib-2.1.0-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e59ff960372504aa051353ccbd82b25d0199da662342b5bcd6b09b8f4dc290ae |
|
MD5 | 67b90d692ce01bc48596fa6b531c8ee7 |
|
BLAKE2-256 | c40f61a8a7c09b6b1e1ac18ca1a8555185ea517abda77162bcdd92d8f17be022 |
Hashes for pycddlib-2.1.0-cp34-cp34m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfd6002277e97b03e9d981437acb0c841bc719a147b8b9677c94a9bc9f55ca32 |
|
MD5 | 540bf3f19dbf912c8be4012d385ca04e |
|
BLAKE2-256 | 45a676a135883c05f92ba0fe46cf88366125d4340ef978cfec7e2c56c2208c51 |
Hashes for pycddlib-2.1.0-cp34-cp34m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 26c187aeb46ff57af958daa1d81616a79d4c3710ae7d1ce681c04f72cdcfddfc |
|
MD5 | 49e9a14bb05a7d8364bf793326827329 |
|
BLAKE2-256 | 0643b3e5524f24f6506fa7170398806ce589785eee4beac35e7ffe68a3f64523 |
Hashes for pycddlib-2.1.0-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e0f0030fe9b375196b66e9e83217abe0476ca1c8d9faf59b1e66cfad66fa1b79 |
|
MD5 | aa97239582cbce20663481682d74a2de |
|
BLAKE2-256 | 6eb908eefa62703e4afbdb7b77330e49ae7d27ad0252a4bcdac48cecdf2a450c |
Hashes for pycddlib-2.1.0-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ebf9a298f3860eab8e83a72d62e9bc26ef26ff9004ab7579dec8b136ae405884 |
|
MD5 | c79c3ffc4b296a46edfddc2d1b561316 |
|
BLAKE2-256 | 3fa2d361bf3b3eb98f3f9bfa5d022b6b7e0001d83c6f963d723ed3f84bf40072 |
Hashes for pycddlib-2.1.0-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 924d46252c354b5420c176ae5e66e5ee1da7d059bd95bb290fff104972d9b0d6 |
|
MD5 | dbc694051c5ba0dcbbee51faf0045547 |
|
BLAKE2-256 | d28b24b8dd2c91b308e321a6a621793d52c520618ae3adf83a808cc812a1efe4 |
Hashes for pycddlib-2.1.0-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aac410a57bd4c439872c653ef32ab748c50020b7c1d2279d8cffb5ee3e2e34f6 |
|
MD5 | 8625f84053e5aba502f43c0ea89d39bc |
|
BLAKE2-256 | a6cb0a48cc4e797096da3ed04d1bf9f2ea053e969402d485051aa924d08689ac |
Hashes for pycddlib-2.1.0-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | eea63934e91ed14e2f74bf919b832f169b31177467ff1494006e1c13782441d9 |
|
MD5 | 05757dd9e74bb302ad6780603386e17e |
|
BLAKE2-256 | 997b5b3602110cb0dea3f677b0826ad63a35fe40606e636289fd7eeae3059ffc |
Hashes for pycddlib-2.1.0-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a3418bd5f5e897876062feb3021cf80af0b3f9663d45c7596a4e198594353fb |
|
MD5 | 57287e7d739db799df65d98a8cd8efbb |
|
BLAKE2-256 | 0bd4ee6826157a44de240906fb741205e76d6ec57b4a144726faec748f07dd97 |