Skip to main content

pyclustring is a python data mining library

Project description

Documentation JOSS


pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (via CCORE library) of each algorithm or model. CCORE library is a part of pyclustering and supported for Linux, Windows and MacOS operating systems.

Official repository:



Required packages: scipy, matplotlib, numpy, Pillow

Python version: >=3.5 (32-bit, 64-bit)

C++ version: >= 14 (32-bit, 64-bit)


Each algorithm is implemented using Python and C/C++ language, if your platform is not supported then Python implementation is used, otherwise C/C++. Implementation can be chosen by ccore flag (by default it is always ‘True’ and it means that C/C++ is used), for example:

# As by default - C/C++ part of the library is used
xmeans_instance_1 = xmeans(data_points, start_centers, 20, ccore=True);

# The same - C/C++ part of the library is used by default
xmeans_instance_2 = xmeans(data_points, start_centers, 20);

# Switch off core - Python is used
xmeans_instance_3 = xmeans(data_points, start_centers, 20, ccore=False);


Installation using pip3 tool:

$ pip3 install pyclustering

Manual installation from official repository using GCC:

# get sources of the pyclustering library, for example, from repository
$ mkdir pyclustering
$ cd pyclustering/
$ git clone .

# compile CCORE library (core of the pyclustering library).
$ cd ccore/
$ make ccore_64bit      # build for 64-bit OS

# $ make ccore_32bit    # build for 32-bit OS

# return to parent folder of the pyclustering library
cd ../

# add current folder to python path

Manual installation using Visual Studio:

  1. Clone repository from:
  2. Open folder pyclustering/ccore
  3. Open Visual Studio project ccore.sln
  4. Select solution platform: ‘x86’ or ‘x64’
  5. Build ‘ccore’ project.
  6. Add pyclustering folder to python path.

Proposals, Questions, Bugs

In case of any questions, proposals or bugs related to the pyclustering please contact to

Issue tracker:

Library Content

Clustering algorithms (module pyclustering.cluster):

  • Agglomerative (pyclustering.cluster.agglomerative);
  • BANG (pyclustering.cluster.bang);
  • BIRCH (pyclustering.cluster.birch);
  • BSAS (pyclustering.cluster.bsas);
  • CLARANS (pyclustering.cluster.clarans);
  • CLIQUE (pyclustering.cluster.clique);
  • CURE (pyclustering.cluster.cure);
  • DBSCAN (pyclustering.cluster.dbscan);
  • Elbow (pyclustering.cluster.elbow);
  • EMA (pyclustering.cluster.ema);
  • Fuzzy C-Means (pyclustering.cluster.fcm);
  • GA (Genetic Algorithm) (;
  • G-Means (pyclustering.cluster.gmeans);
  • HSyncNet (pyclustering.cluster.hsyncnet);
  • K-Means (pyclustering.cluster.kmeans);
  • K-Means++ (pyclustering.cluster.center_initializer);
  • K-Medians (pyclustering.cluster.kmedians);
  • K-Medoids (pyclustering.cluster.kmedoids);
  • MBSAS (pyclustering.cluster.mbsas);
  • OPTICS (pyclustering.cluster.optics);
  • ROCK (pyclustering.cluster.rock);
  • Silhouette (pyclustering.cluster.silhouette);
  • SOM-SC (pyclustering.cluster.somsc);
  • SyncNet (pyclustering.cluster.syncnet);
  • Sync-SOM (pyclustering.cluster.syncsom);
  • TTSAS (pyclustering.cluster.ttsas);
  • X-Means (pyclustering.cluster.xmeans);

Oscillatory networks and neural networks (module pyclustering.nnet):

  • Oscillatory network based on Hodgkin-Huxley model (pyclustering.nnet.hhn);
  • fSync: Oscillatory Network based on Landau-Stuart equation and Kuramoto model (pyclustering.nnet.fsync);
  • Hysteresis Oscillatory Network (pyclustering.nnet.hysteresis);
  • LEGION: Local Excitatory Global Inhibitory Oscillatory Network (pyclustering.nnet.legion);
  • PCNN: Pulse-Coupled Neural Network (pyclustering.nnet.pcnn);
  • SOM: Self-Organized Map (pyclustering.nnet.som);
  • Sync: Oscillatory Network based on Kuramoto model (pyclustering.nnet.sync);
  • SyncPR: Oscillatory Network based on Kuramoto model for pattern recognition (pyclustering.nnet.syncpr);
  • SyncSegm: Oscillatory Network based on Kuramoto model for image segmentation (pyclustering.nnet.syncsegm);

Graph Coloring Algorithms (module pyclustering.gcolor):

  • DSATUR (pyclustering.gcolor.dsatur);
  • Hysteresis Oscillatory Network for graph coloring (pyclustering.gcolor.hysteresis);
  • Sync: Oscillatory Network based on Kuramoto model for graph coloring (pyclustering.gcolor.sync);

Containers (module pyclustering.container):

  • CF-Tree (pyclustering.container.cftree);
  • KD-Tree (pyclustering.container.kdtree);

Cite the Library

If you are using pyclustering library in a scientific paper, please, cite the library:

Novikov, A., 2019. PyClustering: Data Mining Library. Journal of Open Source Software, 4(36), p.1230. Available at:

BibTeX entry:

    doi         = {10.21105/joss.01230},
    url         = {},
    year        = 2019,
    month       = {apr},
    publisher   = {The Open Journal},
    volume      = {4},
    number      = {36},
    pages       = {1230},
    author      = {Andrei Novikov},
    title       = {{PyClustering}: Data Mining Library},
    journal     = {Journal of Open Source Software}

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pyclustering, version
Filename, size File type Python version Upload date Hashes
Filename, size pyclustering- (2.6 MB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page