Skip to main content

A simulation framework for nonequilibrium statistical physics

Project description

Pydiffuser

pypi python doi codecov ci docs status

Pydiffuser is a numerical simulation framework for nonequilibrium statistical physics based on JAX.

This package mainly aims:

  • to share code to implement a numerical simulation on physical models written in various forms of stochastic differential equations.
  • to revisit recent research highlights in nonequilibrium statistical physics.
  • to reduce the repeated code on time-series data analysis, e.g., statistical analysis of single-particle trajectory for SPT experiments.
  • to provide the skeleton of stochastic modeling for anyone interested in stochastic processes.

Installation

Requirements

Python 3.10+, jax>=0.4.18, and jaxlib>=0.4.18.

From PyPI

$ pip install pydiffuser

If properly installed, you can run:

$ pydiffuser --version
pydiffuser, version 0.0.3

Quickstart

Pydiffuser provides various stochastic models that implement a numerical simulation based on the Monte Carlo method. All Pydiffuser's models inherit an abstract class pydiffuser.models.BaseDiffusion and initiate the simulation after a method generate is called. For the simplest case, you can produce a non-interacting Brownian motion at low Reynolds numbers as follows:

from pydiffuser.models import BrownianMotion
from pydiffuser.tracer import Ensemble, Trajectory


model = BrownianMotion()
ensemble: Ensemble = model.generate()
tracer: Trajectory = ensemble[0]  # the 0th particle

Relevant stochastic observables, such as mean-squared displacement and normalized velocity autocorrelation function, can be calculated through the methods of Trajectory and Ensemble.

tamsd = tracer.get_mean_squared_displacement(lagtime=1, rolling=True)
eamsd = ensemble.get_mean_squared_displacement(lagtime=1, rolling=False)
eatamsd = ensemble.get_mean_squared_displacement(lagtime=1, rolling=True)

You can visualize the trajectory using matplotlib:

It is obtained by matplotlib.pyplot.plot(tracer.position_x1, tracer.position_x2).

CLI

List all stochastic models supported by Pydiffuser.

$ pydiffuser model list
NAME            MODEL                           CONFIG                          DIMENSION       
abp             ActiveBrownianParticle          ActiveBrownianParticleConfig    2d              
aoup            ActiveOUParticle                ActiveOUParticleConfig          1d, 2d, 3d      
bm              BrownianMotion                  BrownianMotionConfig            1d, 2d, 3d      
levy            LevyWalk                        LevyWalkConfig                  1d, 2d, 3d      
mips            PhaseSeparation                 PhaseSeparationConfig           1d, 2d, 3d      
rtp             RunAndTumbleParticle            RunAndTumbleParticleConfig      1d, 2d, 3d      
smoluchowski    SmoluchowskiEquation            SmoluchowskiEquationConfig      1d, 2d          
vicsek          VicsekModel                     VicsekModelConfig               2d              

Features

How fast is it?

When generating $N$ realizations consisting of $L$ footprints, we have:

═════════════════════════════════════════════════════════════════════════════════════════════════
Model               Method              Running time [s] for N x L =                             
                                        10² x 10          10³ x 10          10 x 10³          
─────────────────────────────────────────────────────────────────────────────────────────────────
`loop` [*]                              3.62 (0.19)        3.45 (0.23)        3.37 (0.21)        
─────────────────────────────────────────────────────────────────────────────────────────────────
`abp`               `generate`          1.95 (0.14)        1.74 (0.12)        1.59 (0.11)        
`aoup`              `generate`          1.61 (0.08)        1.61 (0.15)        1.55 (0.09)        
`bm`                `generate`          1.45 (0.11)        1.46 (0.13)        1.46 (0.14)        
`smoluchowski`      `generate`          1.71 (0.12)        1.67 (0.15)        1.64 (0.13)        
─────────────────────────────────────────────────────────────────────────────────────────────────
`bm`                `create`            1440.72 (158.16)   964.90 (83.06)     1195.41 (94.28)    
═════════════════════════════════════════════════════════════════════════════════════════════════
[*]
def loop(N: int, L: int) -> float:
    """Even the most straightforward loop requires over 3 [s] for all (N, L) conditions.
    """

    t1 = time.time()

    xes = []
    for _ in range(N):
        x = []
        for _ in range(1, L):
            x.append([])
        xes.append(x)

    t2 = time.time()
    return t2 - t1

The represented running time is a mean $\mu$ (standard deviation $\sigma$) of five trials.

Observables

class pydiffuser.tracer.Trajectoryclass pydiffuser.tracer.Ensemble

  • get_increments
  • get_displacement_moment
  • get_mean_squared_displacement
  • get_cosine_moment
  • get_velocity_autocorrelation
  • get_real_time

The above methods are defined in both Trajectory and Ensemble to enhance transparency. Using Trajectory, the statistical analysis of single-particle trajectory can be accelerated.

Configuration

We introduce a configuration to deal with extensive parameter manipulation. For instance, see config.json, which contains all parameters demanded to instantiate pydiffuser.ActiveBrownianParticle. Every JSON of the configurations listed in CLI can be obtained as follows:

import pydiffuser as pyd
from pydiffuser.models import ActiveBrownianParticle, ActiveBrownianParticleConfig


config = ActiveBrownianParticleConfig()
config.to_json(json_path=<JSON_PATH>)

We suggest a research pipeline:

┌────┐     ┌─────────────────────┐     ┌───────────────┐     ┌──────────┐     ┌────────────┐
JSON├──>──┤`BaseDiffusionConfig`├──>──┤`BaseDiffusion`├──>──┤`Ensemble`├──>──┤NPY | PICKLE
└────┘ [1] └─────────────────────┘ [2] └───────────────┘ [3] └──────────┘ [4] └────────────┘

It can be automized as follows:

config = ActiveBrownianParticleConfig.from_json(json_path=<JSON_PATH>)  # [1]
model = ActiveBrownianParticle.from_config(config=config)  # [2]
ensemble = model.generate()  # [3]
ensemble.to_npy(npy_path=<NPY_PATH>)  # [4]

You can save and load any picklable object through pydiffuser.save and pydiffuser.load.

MODEL_PATH = "model.pickle"


pyd.save(obj=model, pickle_path=MODEL_PATH)  # Here, <PICKLE_PATH> = MODEL_PATH
model = pyd.load(pickle_path=MODEL_PATH)

Related Works

Hyperdiffusion of Poissonian run-and-tumble particles in two dimensions

License

Apache License 2.0

Citation

@misc{jung2023pydiffuser,
  title = {Pydiffuser: a simulation framework for nonequilibrium statistical physics},
  author = {Jung, Yurim},
  year = {2023},
  note = {doi: 10.5281/zenodo.10017027},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydiffuser-0.0.3.tar.gz (385.8 kB view details)

Uploaded Source

Built Distribution

pydiffuser-0.0.3-py3-none-any.whl (41.3 kB view details)

Uploaded Python 3

File details

Details for the file pydiffuser-0.0.3.tar.gz.

File metadata

  • Download URL: pydiffuser-0.0.3.tar.gz
  • Upload date:
  • Size: 385.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for pydiffuser-0.0.3.tar.gz
Algorithm Hash digest
SHA256 3a790a9b104a4f50b7f5ffa8a4102cdccb3ff463703a7e68927ad502a12870a2
MD5 3b138f1d16f10ca21e3d1fd71ad3e83c
BLAKE2b-256 8140312bafee8f8e8864c5ce3041955038663f21e4a8693b03fb5dfae73e04c9

See more details on using hashes here.

Provenance

File details

Details for the file pydiffuser-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: pydiffuser-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 41.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.31.0

File hashes

Hashes for pydiffuser-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 73aed9978ecf5f812e1b6f30ab78eb66e59bcce08d2568bc4c4fc110dafd23a0
MD5 bb5da9d9714df0bf00f2a75c862aa9f0
BLAKE2b-256 40761d62e9ebd6edb550580b20eb912a8547b5ce294b0c32f183681ca071119c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page