Skip to main content

A Python library providing parameter screening of computational models using the Morris method of Elementary Effects or its extension of Efficient Elementary Effects by Cuntz, Mai et al. (Water Res Research, 2015).

Project description

pyeee - Parameter screening of computational models

A Python library for parameter screening of computational models using Morris' method of Elementary Effects or its extension of Efficient/Sequential Elementary Effects by Cuntz, Mai et al. (Water Res Research, 2015).

DOI PyPI version License Build Status

Coverage Status Documentation Status

About pyeee

pyeee is a Python library for performing parameter screening of computational models. It uses Morris' method of Elementary Effects and also its extension of Efficient or Sequential Elementary Effects published of

Cuntz, Mai et al. (2015)
Computationally inexpensive identification of noninformative model parameters by sequential screening
Water Resources Research 51, 6417-6441, doi:10.1002/2015WR016907.

pyeee can be used with Python functions but wrappers are provided to use it with executables as well. Function evaluation can be distributed with Python's multiprocessing or via MPI.

Documentation

The complete documentation for pyeee is available from Read The Docs.

http://pyeee.readthedocs.org/en/latest/

Quick usage guide

Simple Python function

Consider the Ishigami-Homma function: $y = \sin(x_0) + a,\sin(x_1)^2 + b,x_2^4\sin(x_0)$.

Taking $a = b = 1$ gives:

	import numpy as np
	def ishigami1(x):
	   return np.sin(x[0]) + np.sin(x[1])**2 + x[2]**4 * np.sin(x[0])

The three paramters $x_0$, $x_1$, $x_2$ follow uniform distributions between $-\pi$ and $+\pi$.

Morris' Elementary Effects can then be calculated like:

	npars = 3
	# lower boundaries
	lb = np.ones(npars) * (-np.pi)
	# upper boundaries
	ub = np.ones(npars) * np.pi

    # Elementary Effects
	from pyeee import ee
    np.random.seed(seed=1023) # for reproducibility of examples
	out = ee(ishigami1, lb, ub)

which gives the Elementary Effects ($\mu*$):

    # mu*
    print("{:.1f} {:.1f} {:.1f}".format(*out[:,0]))
    # gives: 212.4 0.6 102.8

Sequential Elementary Effects distinguish between informative and uninformative parameters using several times Morris' Elementary Effects:

	# screen
	from pyeee import eee
    np.random.seed(seed=1023) # for reproducibility of examples
	out = eee(ishigami1, lb, ub)

which returns a logical ndarray with True for the informative parameters and False for the uninformative parameters:

    print(out)
    [ True False  True]

Python function with extra parameters

The function for pyeee must be of the form func(x). Use Python's partial from the functools module to pass other function parameters.

For example pass the parameters $a$ and $b$ to the Ishigami-Homma function.

	from functools import partial

	def ishigami(x, a, b):
	   return np.sin(x[0]) + a * np.sin(x[1])**2 + b * x[2]**4 * np.sin(x[0])

	def call_ishigami(ishi, a, b, x):
	   return ishi(x, a, b)

	# Partialise function with fixed parameters
	a = 0.5
	b = 2.0
	func   = partial(call_ishigami, ishigami, a, b)
	npars = 3

	# lower boundaries
	lb = np.ones(npars) * (-np.pi)
	# upper boundaries
	ub = np.ones(npars) * np.pi

    # Elementary Effects
	out = ee(func, lb, ub)

partial passes $a$ and $b$ to the function call_ishigami already during definition so that pyeee can then simply call it as func(x), so that x is passed to call_ishigami as well.

Function wrappers

pyeee provides wrappers to use with partial.

	from pyeee import func_wrapper
	args = [a, b]
	kwargs = {}
	func = partial(func_wrapper, ishigami, args, kwargs)

	# screen
	out = eee(func, lb, ub)

There are wrappers to use with Python functions with or without masking parameters, as well as wrappers for external executables. See the documentation for details.

http://pyeee.readthedocs.org/en/latest/

Installation

The easiest way to install is via pip::

pip install pyeee

See the installation instructions in the documentation for more information.

Requirements:

License

pyeee is distributed under the MIT License.
See the LICENSE file for details.

Copyright (c) 2012-2019 Matthias Cuntz, Juliane Mai

Contributing to pyeee

Users are welcome to submit bug reports, feature requests, and code contributions to this project through GitHub.
More information is available in the Contributing guidelines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyeee-0.7.tar.gz (61.7 kB view details)

Uploaded Source

Built Distribution

pyeee-0.7-py2.py3-none-any.whl (44.4 kB view details)

Uploaded Python 2Python 3

File details

Details for the file pyeee-0.7.tar.gz.

File metadata

  • Download URL: pyeee-0.7.tar.gz
  • Upload date:
  • Size: 61.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.0

File hashes

Hashes for pyeee-0.7.tar.gz
Algorithm Hash digest
SHA256 95029200969a5f57ace51d73282e9c9e37f8724ef58606688816e1c6d3b35771
MD5 c644226511f6873fc3c767332cf2d03f
BLAKE2b-256 4a34d01e0c016b240aefe829b125b7f58f691bc80a159d121302356b77ba8338

See more details on using hashes here.

File details

Details for the file pyeee-0.7-py2.py3-none-any.whl.

File metadata

  • Download URL: pyeee-0.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 44.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.1.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.8.0

File hashes

Hashes for pyeee-0.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 68e17248bfcacf024c66dbb03c03659fc3768be05bf1a3ab087746965a1fc8de
MD5 63f63d40a99dd0e41f46513b6c2be796
BLAKE2b-256 331e855ef80f666cbd5c22cd88da87c86672544bbe8b173b4201927787b2a9dc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page