No project description provided
Project description
Python Client for Epsilla Vector Database
Welcome to Python SDK for Epsilla Vector Database!
Install pyepsilla
pip3 install --upgrade pyepsilla
Connect to Epsilla Vector Database
Run epsilla vectordb on localhost
docker pull epsilla/vectordb
docker run -d -p 8888:8888 epsilla/vectordb
When Port 8888 conflicted with Jupyter Notebook
If you are using Jupyter Notebook on localhost, the port 8888 maybe conflict!
So you can change the vectordb port to another number, such as 18888
docker run -d -p 18888:8888 epsilla/vectordb
Use pyepsilla to connect to and interact with local vector database
from pyepsilla import vectordb
db_name = "MyDB"
db_path = "/tmp/epsilla"
table_name = "MyTable"
## 1.Connect to vectordb
client = vectordb.Client(
host='localhost',
port='8888'
)
## 2.Load and use a database
client.load_db(db_name, db_path)
client.use_db(db_name)
## 3.Create a table in the current database
client.create_table(
table_name=table_name,
table_fields=[
{"name": "ID", "dataType": "INT", "primaryKey": True},
{"name": "Doc", "dataType": "STRING"},
{"name": "Embedding", "dataType": "VECTOR_FLOAT", "dimensions": 4}
]
)
## 4.Insert records
client.insert(
table_name=table_name,
records=[
{"ID": 1, "Doc": "Berlin", "Embedding": [0.05, 0.61, 0.76, 0.74]},
{"ID": 2, "Doc": "London", "Embedding": [0.19, 0.81, 0.75, 0.11]},
{"ID": 3, "Doc": "Moscow", "Embedding": [0.36, 0.55, 0.47, 0.94]},
{"ID": 4, "Doc": "San Francisco", "Embedding": [0.18, 0.01, 0.85, 0.80]},
{"ID": 5, "Doc": "Shanghai", "Embedding": [0.24, 0.18, 0.22, 0.44]}
]
)
## 5.Search with specific response field
status_code, response = client.query(
table_name=table_name,
query_field="Embedding",
query_vector=[0.35, 0.55, 0.47, 0.94],
response_fields = ["Doc"],
limit=2
)
print(response)
## 6.Search without specific response field, then it will return all fields
status_code, response = client.query(
table_name=table_name,
query_field="Embedding",
query_vector=[0.35, 0.55, 0.47, 0.94],
limit=2
)
print(response)
## 7.Delete records by primary_keys (and filter)
status_code, response = client.delete(table_name=table_name, primary_keys=[3, 4])
status_code, response = client.delete(table_name=table_name, filter="Doc <> 'San Francisco'")
print(response)
## 8.Drop a table
client.drop_table(table_name)
## 9.Unload a database from memory
client.unload_db(db_name)
Connect to Epsilla Cloud
Register and create vectordb on Epsilla Cloud
Use Epsilla Cloud module to connect with the vectordb
Please get the project_id, db_id, epsilla_api_key from Epsilla Cloud at first
from pyepsilla import cloud
epsilla_api_key = os.getenv("EPSILLA_API_KEY", "Your-Epsilla-API-Key")
project_id = os.getenv("EPSILLA_PROJECT_ID", "Your-Project-ID")
db_id = os.getenv("EPSILLA_DB_ID", "Your-DB-ID")
# 1.Connect to Epsilla Cloud
cloud_client = cloud.Client(project_id="*****-****-****-****-************", api_key="eps_**********")
# 2.Connect to Vectordb
db_client = cloud_client.vectordb(db_id)
# 3.Create a table with schema
status_code, response = db.create_table(
table_name="MyTable",
table_fields=[
{"name": "ID", "dataType": "INT", "primaryKey": True},
{"name": "Doc", "dataType": "STRING"},
{"name": "Embedding", "dataType": "VECTOR_FLOAT", "dimensions": 4},
],
)
print(status_code, response)
# 4.Insert new vector records into table
status_code, response = db.insert(
table_name="MyTable",
records=[
{"ID": 1, "Doc": "Berlin", "Embedding": [0.05, 0.61, 0.76, 0.74]},
{"ID": 2, "Doc": "London", "Embedding": [0.19, 0.81, 0.75, 0.11]},
{"ID": 3, "Doc": "Moscow", "Embedding": [0.36, 0.55, 0.47, 0.94]},
{"ID": 4, "Doc": "San Francisco", "Embedding": [0.18, 0.01, 0.85, 0.80]},
{"ID": 5, "Doc": "Shanghai", "Embedding": [0.24, 0.18, 0.22, 0.44]},
],
)
print(status_code, response)
# 5.Query Vectors with specific response field, otherwise it will return all fields
status_code, response = db.query(
table_name="MyTable",
query_field="Embedding",
query_vector=[0.35, 0.55, 0.47, 0.94],
response_fields=["Doc"],
limit=2,
)
print(status_code, response)
# 6.Delete specific records from table
status_code, response = db.delete(table_name="MyTable", primary_keys=[4, 5])
status_code, response = db.delete(table_name="MyTable", filter="Doc <> 'San Francisco'")
print(status_code, response)
# 7.Drop table
status_code, response = db.drop_table(table_name="MyTable")
print(status_code, response)
Connect to Epsilla RAG
Please get the project_id, epsilla_api_key, ragapp_id, converstation_id(optional) from Epsilla Cloud at first The resp will contains answer as well as contexts, like {"answer": "****", "contexts": ['context1','context2', ...]}
from pyepsilla import cloud
epsilla_api_key = os.getenv("EPSILLA_API_KEY", "Your-Epsilla-API-Key")
project_id = os.getenv("EPSILLA_PROJECT_ID", "Your-Project-ID")
ragapp_id = os.getenv("EPSILLA_RAGAPP_ID", "Your-RAGAPP-ID")
conversation_id = os.getenv("EPSILLA_CONVERSATION_ID", "Your-CONVERSATION-ID")
# 1.Connect to Epsilla RAG
client = cloud.RAG(
project_id=project_id,
api_key=epsilla_api_key,
ragapp_id=ragapp_id,
conversation_id=conversation_id,
)
# 2.Start a new conversation with RAG
client.start_new_conversation()
resp = client.query("What's RAG?")
print("[INFO] response is", resp)
Contributing
Bug reports and pull requests are welcome on GitHub at here
If you have any question or problem, please join our discord
We love your Feedback!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pyepsilla-0.3.15.tar.gz.
File metadata
- Download URL: pyepsilla-0.3.15.tar.gz
- Upload date:
- Size: 22.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
c2e12d8cb65a6ae282c919132271fdf14d73b83aa35f0cda544f88e804801e22
|
|
| MD5 |
b903970897a9283c8902cc7a026d234d
|
|
| BLAKE2b-256 |
1b48cf000696a4a373d85c1fede16b434fd4d84d5ca8834b334ffc610f42d351
|
File details
Details for the file pyepsilla-0.3.15-py3-none-any.whl.
File metadata
- Download URL: pyepsilla-0.3.15-py3-none-any.whl
- Upload date:
- Size: 29.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.13.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
80cd7f4f942c99fc6890062ca0e77485b9fe6e90e138163aba23f4eaf7fe7bdb
|
|
| MD5 |
737a0aca4c0acf0ff358614b88cfa02a
|
|
| BLAKE2b-256 |
9439be8851fb0abf5c67e0bf9dc93851f689bf63401020e391cae8e80d2fdb49
|