Skip to main content

Face related toolkit

Project description


Face related toolkit. This repo is still under construction to include more models.


The easiest way to install it is using pip:

pip install git+

No extra setup needs, pretrained weights will be downloaded automatically.

Face Detection

We simply wrap a retinaface detector for easy usage. Check this notebook.

Please consider citing

  title={Retinaface: Single-shot multi-level face localisation in the wild},
  author={Deng, Jiankang and Guo, Jia and Ververas, Evangelos and Kotsia, Irene and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},

Face Parsing

We wrap the FaRL models for face parsing. Check this notebook.

Please consider citing

  title={General Facial Representation Learning in a Visual-Linguistic Manner},
  author={Zheng, Yinglin and Yang, Hao and Zhang, Ting and Bao, Jianmin and Chen, Dongdong and Huang, Yangyu and Yuan, Lu and Chen, Dong and Zeng, Ming and Wen, Fang},
  journal={arXiv preprint arXiv:2112.03109},

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release. See tutorial on generating distribution archives.

Built Distribution

pyfacer-0.0.1-py3-none-any.whl (19.0 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page