Skip to main content

Geneset Network Analysis

Project description

# PyGNA: a Python framework for geneset network analysis

Current version: 3.1.6-dev

[![Build Status](http://drone.stracquadaniolab.org/api/badges/stracquadaniolab/pygna/status.svg)](http://drone.stracquadaniolab.org/stracquadaniolab/pygna) [![Anaconda-Server Badge](https://anaconda.org/stracquadaniolab/pygna/badges/platforms.svg)](https://anaconda.org/stracquadaniolab/pygna) [![Anaconda-Server Badge](https://anaconda.org/stracquadaniolab/pygna/badges/version.svg)](https://anaconda.org/stracquadaniolab/pygna)

PyGNA is a unified framework for network analysis of high-throughput experiment results. It can be used both as a standalone command line application or it can be included as a package in your own python code.

For an overview of PyGNA functionalities check the infographic below, otherwise dive into the [Getting started](#getting-started) guide.

![Infographic](docs/pygna_infographic-01.png)

## Installation

The easiest and fastest way to install pygna using conda:

$ conda install -c stracquadaniolab -c bioconda -c conda-forge pygna

Alternatively you can install it through pip:

$ pip install pygna

Please note, that pip will not install non Python requirements.

## Getting started

A typical pygna analysis consists of 3 steps:

  1. Generate the RWR and SP matrices for the network you are using ( once they are generated, you won’t need to repeat the same step again)

  2. Make sure that the input genesets are in the right format. If a network uses entrez ID, and your file is in HUGO symbols, use the pygna utility for the name conversion.

  3. Run the analysis you are interested into.

  4. Once you have the output tables, you can choose to visualize one or more plots.

Otherwise you can check our [snakemake workflow](https://github.com/stracquadaniolab/workflow-pygna) for the full geneset analysis; our workflow contains sample data that you can use to familiarize with our software.

The examples below show some basic analysis that can be carried out with pygna

### Example 1: Running pygna GNT analysis

Running pygna on this input as follows:

$ cd ./your-path/min-working-example/

$ pygna build-rwr-diffusion barabasi.interactome.tsv –output-file interactome_RWR.hdf5

$ pygna test-topology-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_topology_rwr.csv –number-of-permutations 1000 –cores 4

$ pygna paint-datasets-stats table_topology_rwr.csv barplot_rwr.pdf

You can look at the plot of the results in the barplot_rwr.pdf file, and the corresponding table in table_topology_rwr.csv.

### Example 2: Running pygna GNA analysis

$ cd ./your-path/min-working-example/

skip this step if the matrix is already computed

$ pygna build-RWR-diffusion barabasi.interactome.tsv –output-file interactome_RWR.hdf5

The association analysis is run N x M times (N number of genesets, M number of pathways), we use only 50 permutations in this example to avoid long computations; however, the recommended value is 1000.

$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_association_rwr.csv -B disgenet_cancer_groups_subset.gmt –keep –number-of-permutations 100 –cores 4

If you don’t include the –results-figure flag at the comparison step, plot the matrix as follows

$ pygna paint-comparison-matrix table_association_rwr.csv heatmap_association_rwr.png –rwr –annotate

The -k flag, keeps the -B geneset and permutes only on the set A.

If setname B is not passed, the analysis is run between each couple of setnames in the geneset.

$ pygna test-association-rwr barabasi.interactome.tsv disgenet_cancer_groups_subset.gmt interactome_RWR.hdf5 table_within_comparison_rwr.csv –number-of-permutations 100 –cores 4

$ pygna paint-comparison-matrix table_within_comparison_rwr.csv heatmap_within_comparison_rwr.png –rwr –single-geneset

You can look at the plot of the results in the heatmap_within_comparison_rwr.png file, and the corresponding table in table_within_comparison_rwr.csv.

## Documentation

The official documentation for pygna can be found on [readthedocs](https://pygna.readthedocs.io/).

## Authors

## Citation

A unified framework for geneset network analysis. Viola Fanfani, Giovanni Stracquadanio. bioRxiv 699926; doi: https://doi.org/10.1101/699926

## Issues

Please post an issue to report a bug or request new features. We are now working on code refactoring and standardising the I/O behaviour.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygna-3.1.6.dev0.tar.gz (39.6 kB view details)

Uploaded Source

Built Distribution

pygna-3.1.6.dev0-py3-none-any.whl (47.3 kB view details)

Uploaded Python 3

File details

Details for the file pygna-3.1.6.dev0.tar.gz.

File metadata

  • Download URL: pygna-3.1.6.dev0.tar.gz
  • Upload date:
  • Size: 39.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pygna-3.1.6.dev0.tar.gz
Algorithm Hash digest
SHA256 38ba9d9d454746f72553e4046fe8244fcd76f6656293b2a19ea83cb4a86c28bc
MD5 a377dde9f233bbd44c6684b9c2b9502b
BLAKE2b-256 8a3cc41153bdd74ecc7b8a303108713d6f34bdc543b9afd506f5be58f070cb51

See more details on using hashes here.

File details

Details for the file pygna-3.1.6.dev0-py3-none-any.whl.

File metadata

  • Download URL: pygna-3.1.6.dev0-py3-none-any.whl
  • Upload date:
  • Size: 47.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for pygna-3.1.6.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 53cafc3f83d2bd19fbfc3d09493db5f8b7fae53394df66c0abb3ddcac643c451
MD5 a3db02dda7a4552ed8d3bf43a69c0e0a
BLAKE2b-256 f9de31ce31ac7f59603c8f5e54be6a995b58dab108dc34c80bd1e09b18d17c38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page