Skip to main content

A python package for finding genomic range overlaps

Project description

a python library for finding genomic range overlaps based on cgranges.

Installation

pygros is available on PyPi, to install it:

pip install pygros

Usage

>>> import pygros
>>> ranges = pygros.Ranges()
>>> ranges.add('chr1', 10, 20)
>>> ranges.add('chr1', 30, 50)
>>> ranges.add('chr1', 25, 40)
>>> ranges.index()
>>> ranges.overlap('chr1', 30, 40)
[(25, 40, -1), (30, 50, -1)]

API reference

pygros.Ranges(intervals=[])

create a Ranges object to store genomic ranges

@param intervals: a list or tuple containing multiple ranges

@return Ranges object

add(chrom, start, end, label=-1)

add genomic range into Ranges object

@param chrom: chromosome name or sequence name

@param start: start of range

@param end: end of range

@param label: an integer

index()

After add new genomic ranges, use this method to build index

overlap(chrom, start, end)

get genomic ranges that overlapped with your given range (start, end)

@param chrom: chromosome or sequence name

@param start: start of range

@param end: end of range

@return: a list of ranges

within(chrom, start, end)

get genomic ranges within given range (start, end)

@param chrom: chromosome or sequence name

@param start: start of range

@param end: end of range

@return: a list of ranges

contain(chrom, start, end)

get genomic ranges that contained in given range (start, end)

@param chrom: chromosome or sequence name

@param start: start of range

@param end: end of range

@return: a list of ranges

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pygros-0.2.0.tar.gz (4.9 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pygros-0.2.0-cp313-cp313-win_amd64.whl (12.9 kB view details)

Uploaded CPython 3.13Windows x86-64

pygros-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (36.9 kB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pygros-0.2.0-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (37.4 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64manylinux: glibc 2.5+ x86-64

pygros-0.2.0-cp313-cp313-macosx_11_0_arm64.whl (12.2 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pygros-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl (12.5 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

pygros-0.2.0-cp312-cp312-win_amd64.whl (12.9 kB view details)

Uploaded CPython 3.12Windows x86-64

pygros-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (36.7 kB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pygros-0.2.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (37.6 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64manylinux: glibc 2.5+ x86-64

pygros-0.2.0-cp312-cp312-macosx_11_0_arm64.whl (12.2 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pygros-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl (12.5 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pygros-0.2.0-cp311-cp311-win_amd64.whl (12.9 kB view details)

Uploaded CPython 3.11Windows x86-64

pygros-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (36.2 kB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pygros-0.2.0-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (36.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64manylinux: glibc 2.5+ x86-64

pygros-0.2.0-cp311-cp311-macosx_11_0_arm64.whl (12.2 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pygros-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl (12.5 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pygros-0.2.0-cp310-cp310-win_amd64.whl (12.9 kB view details)

Uploaded CPython 3.10Windows x86-64

pygros-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (36.5 kB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pygros-0.2.0-cp310-cp310-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (36.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64manylinux: glibc 2.5+ x86-64

pygros-0.2.0-cp310-cp310-macosx_11_0_arm64.whl (12.2 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pygros-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl (12.5 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pygros-0.2.0-cp39-cp39-win_amd64.whl (12.9 kB view details)

Uploaded CPython 3.9Windows x86-64

pygros-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl (36.2 kB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pygros-0.2.0-cp39-cp39-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (36.6 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64manylinux: glibc 2.5+ x86-64

pygros-0.2.0-cp39-cp39-macosx_11_0_arm64.whl (12.2 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pygros-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (12.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

pygros-0.2.0-cp38-cp38-win_amd64.whl (12.8 kB view details)

Uploaded CPython 3.8Windows x86-64

pygros-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl (36.2 kB view details)

Uploaded CPython 3.8musllinux: musl 1.2+ x86-64

pygros-0.2.0-cp38-cp38-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl (37.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ x86-64manylinux: glibc 2.5+ x86-64

pygros-0.2.0-cp38-cp38-macosx_11_0_arm64.whl (11.9 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

pygros-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl (12.2 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file pygros-0.2.0.tar.gz.

File metadata

  • Download URL: pygros-0.2.0.tar.gz
  • Upload date:
  • Size: 4.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygros-0.2.0.tar.gz
Algorithm Hash digest
SHA256 af5ec28660d71f47aeca73e494bda4744847548e4da0dd45f18b6b349f5f98de
MD5 941d2d29ad5a0bd0170eda572d096eee
BLAKE2b-256 db44521ac62767e95ac1eb381e1adf4e86b308d192b3719c9eaf9e078cba91e9

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pygros-0.2.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygros-0.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c8b29dcebadeb1e215a5faa23acfc2cd18bc3035ab0eec36f9c38c8443a9387b
MD5 b6ee65d180ec0804b90ef90209e28572
BLAKE2b-256 5f5bdfe3996de90aadf15437e9b45f56c8987dc9f7bc9a960616ec601ec066fb

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a18faf8971bbf597eefd1971cf07f68047a6330f1f85eea1c2aa3973bc79bd51
MD5 c07dbd571190efbf51d03598e347c475
BLAKE2b-256 fe5b20cef546b943625b7d5d947edf92cfa5b98e2626de97d7a812fff8cbe2b3

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl
Algorithm Hash digest
SHA256 028714ccc2c079877cb5f73d22bdf8cba576d92f3741514a0674c64aa9f6de7b
MD5 9690d2bd0c18c9d34dd286317e7de4d4
BLAKE2b-256 90bd6d7f083dad68e89cbfbd714009109b80cb845c4da61264a3ef3fd8af449c

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 657218801f9fa92370e89f9b42a96a1290d2bc34f017dcfa43eea857fa22d2d7
MD5 3b7ba5121e66f0f22ce66604012c5c69
BLAKE2b-256 f2d7e3d2fac0c1a18b606ec3eeeda06e1a2823a447cde17042b7617ac1cdff58

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1c40a236420678812eb2d478ad35ddbc18c485b930cf01c7ab2ba6e5f26d6ed2
MD5 db0004d47e689572589a5bccf8c4a31a
BLAKE2b-256 1eaba46ca7a49077420a2d6a2af82a6f3646bccba2d452977a19c904a9b99d25

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pygros-0.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygros-0.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 78f29331a08025028489efb264b1d58ffd133a014f61b00d5d56e37a833bcbcf
MD5 b1260aa29a8be4780deb92580259d974
BLAKE2b-256 80fdbd693fcc8d6384ecad3d0e743f6cf470080375d37ff540a52f11161d0ab2

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f828992d84d58c78563d79441d9f23f929f6d570deb0db97051900d4f1285922
MD5 897bfd574f699f0a46c39d888486d6ab
BLAKE2b-256 822871f2a0df43b4ffd7f42d94e05ea0642dfec2dff1f80b2242cdb2718c43e0

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl
Algorithm Hash digest
SHA256 1f7b5035a28663624468ec685d11a5576864d5d48d2da6a1a2e32df0b4020499
MD5 dbafd57ba87a9c04689702516198f45e
BLAKE2b-256 d325aa6ca73c23f4e012968d5a5d8f50572fd4e2726f0fd0c495b39d243d40cf

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 37ea2d718e188f391928a89335e65a5095f6f755ebbacba15f3bcc0579224c98
MD5 2fab9a091fed3b928ab87b50a8780018
BLAKE2b-256 75ae4b700012e7aaf86e25b86a1a313da3be23e755319d1c8faeb1a251ec876e

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8a6428a07b983761be990888511074164fa97e93336d7302807b481ff641573c
MD5 41184ad10354f0d3367565420e3babff
BLAKE2b-256 da6fcc103baad24c8b25dfc7c820e6262b4bfcd6b7690b46ecd1f4b9fd186bbf

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pygros-0.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygros-0.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8cff8da5d330a7de17901596f584880630d0c03a579f143272b73de93d86ebe2
MD5 015e7affb2ad563a076dd4c333826381
BLAKE2b-256 5bebb98bea1acc86408f1dcfbe8ff600b63a2c1526beb7bee0de9916ed9de0fd

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 95b3c0f5ecdbbff580fac4b6b89d4c54a096fc7e321e88e9e5723ccf1d122b8b
MD5 bb00c2531a4b5d3e50b1db886fee7dc5
BLAKE2b-256 2cf3381f7e4480c68edafe5185b64daf96272eaecd272e6781ba3751aa351df9

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl
Algorithm Hash digest
SHA256 74e81124fbb3eee96e188c0a409ac4ac96179623797213ddd3a8f1723b5ed2ff
MD5 960be94c31a3fd4fd5cdf89e0ee01a90
BLAKE2b-256 742d68c5a3d3e8f93588529ac1a51977301f5d022498ab246e202cf630eed70c

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0189819fa14106a3ee5205d2c8ab424cc96c12462f291f617c6a46e6a662560f
MD5 e35418ff9b53a107cf8f5b253e8a95f7
BLAKE2b-256 91bd8787374233044f6e19cd182d7680caa7518539d4be1ceb03bfa15e58c6b8

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fa68676a8e61be2f5f9bb5ce080d6629d3a6f49ae0fa5d53395ee404981fe9c8
MD5 2a1ec805762c4950954f931bff870ca1
BLAKE2b-256 0edb2205bb1ae32899d713a34e56a65fb05353b3d6ad82f0ebc1ce48af8d924f

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pygros-0.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygros-0.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fe139545347a27e584438f75ab4d34ef053fd06a35dabdf323a84298870a9883
MD5 14ed4ac39e2667a2b8e44190da97704f
BLAKE2b-256 2c6a04addd689a0d9edb26c62c1273038b0d32e8d9f430b93e782cf3aca7e65b

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a18abad762458d3df869e82a3fba39f5b2d1556078443bfef2316b8d8e1d194d
MD5 af87da68e8807020a3d65a47a7c8f5ee
BLAKE2b-256 c8562f54d7b4eb4551729cb2518bcffbf76b1264e9172bfbda3ac37ef14e1085

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp310-cp310-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp310-cp310-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl
Algorithm Hash digest
SHA256 7633b759260761b94423c845797f89232370aa9e0fb26e890af89ab5da7fcc60
MD5 621bf7b40f98e2bff8ae3ff187714d1c
BLAKE2b-256 44e8a3638098d7d3542c103896214c1ac970e4fbde7e7ff3144bf4165d890bdb

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e528f565707fc9a56eb63247359a452fbf55d47638b345e1398b9747cca71584
MD5 78e785a949b75741e949ce845f2c77f4
BLAKE2b-256 a9af669695162bffec65ad059afca347dc28d830b1019bcaaabd14499fc55c98

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c773b6bd3b62da0e15aaba66778013602d86bf2dab7393e12c80c09fe2828a85
MD5 70d390db16278ca5cbd9c77d7a238ca8
BLAKE2b-256 5ab0d1669e5c6cfb0df633bfbf3ebe2e28f1a613ac43702d8dfefed5b0c51c17

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pygros-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 12.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygros-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 abc1ef17475797262111e770b9ba78034722a40d1147416d894659226c40114e
MD5 0c5f8daa328c33afd943246c815af871
BLAKE2b-256 9ee976176ff1998e7437169aed94d52ee64e53c912961d88980d1c2dff516c7a

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7c334b33e2947614cb24dc3ff6e27d020e648e87a083127db38bcf1326d34a44
MD5 45e927e75c1b03e2018e92a89ecc9d34
BLAKE2b-256 25891c1b090bf44e410c6bfc33c42fb6e52740abda15d02664c1d6931f74f368

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp39-cp39-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp39-cp39-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl
Algorithm Hash digest
SHA256 f4ac0062c3268ddfe3bda734c2781a898cecf56c6494abeb23776e62322bce06
MD5 8d72f03b90785677687eb1a3a219bfc3
BLAKE2b-256 c8bb7440b8fbee58cc54333db4d9bb5566bdbfc770fa272166307491da310771

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1cf8a41628a03d6c39e22e9635f8b10fe137b22ea5ffb476abf0715abe291b93
MD5 5d4a648b000c044c1dcaad2fba728575
BLAKE2b-256 a3948895bf8b10e6a263d2206885b64619d9b68eae40aa2cbbd2cd48e9d03199

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ddcbe78b5029c4f56c08a89e04866b8011212718cbc01cf357c7f8d81157abfb
MD5 a64c90822b956dc666ec9fd7ded15719
BLAKE2b-256 b527ee3a2184440ae3e055e0ad8a92ea104b3ae0d401858009a011ad084952f5

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pygros-0.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 12.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pygros-0.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e59e7f651f67658835fa941f64643785697e269726cfa52a51733141e9a0aad1
MD5 0ade0ef87d0f772b6715866e5b3b0f5f
BLAKE2b-256 031b507e1aa67c51ecdc24feb37641c17477f6ae5a64dc5ae7202c0f63727ae4

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 99e3bfd803dfd56203fb7d0f64dba838dec0f9dd59fb79ab13faffe3ddd62a97
MD5 45435ca9cb82a560c075014534a8c55f
BLAKE2b-256 05fc6685cd84ce1f85893ed7eefcdcf7628c69c9b623c44e2af209004346c858

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp38-cp38-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp38-cp38-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl
Algorithm Hash digest
SHA256 e32379fe054bd0ddb9784a255f6629a461198ff68f6282d1e447f6b2342832a4
MD5 27ae91e0b286aa1fd584ca2f092f8d10
BLAKE2b-256 4e240d90458c7b019ea7b7c01c3367713eb93538454b1a59d735240b299f5545

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02a388c168c4d8bdeac71b63321712e6ef3328fbb4c1b3a94efc53e33c465455
MD5 2967faf954a5e08817a31eac9f3cad83
BLAKE2b-256 23e3eab10a83bd48b1a6baf68815684e588d45a0d2f4c5c3bf123099225f7d18

See more details on using hashes here.

File details

Details for the file pygros-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pygros-0.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48f5d2df89a60a1bba00aa740c4dfea11aa422d5653d8f4b5893a32f5f8b5495
MD5 9dd31535d5def379a9bf18ac32f33550
BLAKE2b-256 69fc3e340190fbfa732ba184f42b660615b03e429cd1b971bd87c85ffdb1eddf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page