Skip to main content

A package for forecasting reconciliation.

Project description

pyhts

A python package for hierarchical forecasting, inspired by the hts package in R.

Features

  • Support pupular forecast reconciliation models in the literature, e.g. ols, wls, mint et al. Forecasting with temporal hierarchies will be supported in the future.
  • Multiple methods for the construction of hierarchy.
  • Use different base forecasters for different hierarchical levels.
  • Sklearn-like API.

Quick Demo

  • Load the Australia tourism flows data.
from pyhts import load_tourism

tourism_data = load_tourism()
train = tourism_data.iloc[:, 4:-12].T.values
test = tourism_data.iloc[:, -12:].T.values
  • Define the hierarchy.
from pyhts import Hierarchy

hierarchy = Hierarchy.new(tourism_data, [('state', 'region', 'city')])
print(hierarchy.node_name)
  • Create an ols forecasting reconciliation model with sklearn-like API.
from pyhts import HFModel

model_ols = HFModel(hierarchy=hierarchy, base_forecasters="arima",
                    hf_method="comb", comb_method="ols")
  • Fit the model and produce forecasts.
model_ols.fit(train)
ols = model_ols.predict(horizon=12)
  • model.fit() fits the baseforecasters and computes the weighting matrix used to reconcile the base forecasts.

  • model.predict() calculates the base forecasts for all levels and reconciles the base forecasts.

  • Obtain coherent forecasts of all the hierarchical levels.
all_level_ols = hierarchy.aggregate_ts(ols)
  • fit other methods using fitted base forecasters
model_wlss = HFModel(hierarchy, base_forecasters=model_ols.base_forecasters,
                     hf_method="comb", comb_method="wls", weights="structural")
model_wlss.fit(train)
wlss = model_wlss.predict(horizon=12)

model_wlsv = HFModel(hierarchy, base_forecasters=model_ols.base_forecasters,
                     hf_method="comb", comb_method="mint", weights="variance")
model_wlsv.fit(train)
wlsv = model_wlsv.predict(horizon=12)

model_shrink = HFModel(hierarchy, base_forecasters=model_ols.base_forecasters,
                       hf_method="comb", comb_method="mint", weights="shrinkage")
model_shrink.fit(train)
shrink = model_shrink.predict(horizon=12)
  • Evaluate the forecasting accuracy.
# accuracy of reconciled forecasts
accuracy = [hierarchy.accuracy(test, fcast, hist=train, measure=['mase', 'rmse'])
            for fcast in (ols, wlss, wlsv, shrink)]

# accuracy of base forecasts
base_forecasts = model_ols.generate_base_forecast(horizon=12)
accuracy_base = hierarchy.accuracy_base(test, base_forecasts, hist=train, measure=['mase', 'rmse'])

Because of the incoherence of base forecasts, base_forecasts are forecasts of all time series in the hierarchy, while coherent forecasts are forecasts of the bottom-level time series.

Documentation

See documentation here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyhts-0.2.0.tar.gz (116.9 kB view hashes)

Uploaded Source

Built Distribution

pyhts-0.2.0-py3-none-any.whl (116.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page