Simulation of Low Density Parity Check Codes
Project description
version 0.4
In Brief:
Generates coding and decoding matrices.
Probabilistic decoding: Belief Propagation algorithm.
Images transmission simulation (AGWN):
e.g of decoding:
Tutorials:
Jupyter notebooks:
For LDPC construction details: pyLDPC construction
For Images coding/decoding Tutorial: Images Tutorial
version 0.4:
Contains:
- Coding and decoding matrices Generators:
Regular parity-check matrix using Callager’s method.
Coding Matrix G both non-systematic and systematic.
Coding function adding Additive White Gaussian Noise.
- Decoding functions using Probabilistic Decoding (Belief propagation algorithm):
Default BP algorithm.
Full-log BP algorithm.
- Images transmission sub-module:
Coding and Decoding Grayscale Images.
Coding and Decoding RGB Images.
What’s new:
Images sub-module
Using Signal-Noise-Ratio (SNR) instead of AWGN’s variance.
In the upcoming versions:
In the upcoming versions:
Irregular Parity Check Matrices.
Text Transmission functions.
Sound Transmission functions.
Contact:
Please contact hicham.janati@ensae.fr for any bug encountered / any further information.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pyldpc-0.3.tar.gz.
File metadata
- Download URL: pyldpc-0.3.tar.gz
- Upload date:
- Size: 7.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4919681d0268381c5ce5484c62bd10107892786ae537bb94c7139abfa6508394
|
|
| MD5 |
44e64492828ec61ffc1806c3e63c4a8b
|
|
| BLAKE2b-256 |
f15a611baeda9cd26eb2ec12391e5e8b5561e0cd74c8a08563d67f038fd9902a
|